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In memory of Arthur Parr, 1913–1992. 

Man is still the most extraordinary computer of all. 

John F. Kennedy
21 May 1963
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Preface

All industrial processes need some form of control system if they are to
run safely and economically. In recent years a specialist control computer,
called a programmable controller, has evolved and revolutionized control
engineering by combining computing power and immense flexibility at
a reasonable price. 

This book is concerned with the application and use of programmable
controllers. It is not an instructional book in programming, and is certainly
not a comparative guide to the various makes of machine on the market.

To some extent, choosing a programmable controller is rather like
choosing a word processor. You ask people for their views, try a few
simple examples in a shop, and buy the cheapest that you think meets
your requirements. Only after several months do you really know the
system. From then on, all other word processors seem awkward. 

Programmable controllers are similar. Unless there are good reasons
for a particular choice (ready experience in the engineering or maintenance
staff, equipment being supplied by an outside contractor and similar
considerations), there are good and bad points with all (the really bad
machines left the market years ago). 

At the Sheerness Steel Company where I work, the plant control is
based on about sixty programmable controllers consisting of Allen
Bradley PLC 2s and 5s, GEC (now CEGELEC) GEM-80s, ASEA (now
ABB) Masters and Siemens SIMATIC S5s, with small machines primar-
ily from Mitsubishi. These controllers are somewhat like the trees at
Galleons Lap in Winnie the Pooh; there never seems to be the same
number on two successive days, even if you tie a piece of string around
each one! 

As with most plants, the background to this distribution of controllers
is largely historical chance (the original Mitsubishi came on a small
turn-key plant from an outside contractor, for example), but the ready
access to these machines is the reason for their prominence in this book.
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xii Preface

Even within this range of PLC families, the coverage in this book is
not complete. The PLCs have been chosen to cover the application points
I wish to make, not as a complete survey of a manufacturer’s range.

In ‘previous lives’ I have worked with PLCs from AEG, GE, Landys
and Gyr, Modicon, Telemecanique, Texas Instruments and many other
companies. To these manufacturers I offer my sincere apologies for not
giving them more coverage, but to do so would have made a tedious book
and masked the application points I have tried to make. I could happily
use any of these machines, and there is not a major difference in style or
philosophy between them (the manufacturers would no doubt disagree!).

The guideline is therefore choose a machine that suits you, and do not
change manufacturers for purely economic reasons. Knowledge, consistency
of spares and a good relationship with a manufacturer are very valuable.

A book like this requires much assistance, and I would like to thank
Peter Bark and Dave Wilson of ABB, Adrian Bishop, Bob Hunt, Julian
Fielding, John Hanscombe, Hugh Pickard, Jennie Holmes and Hennie
Jacobs of Allen Bradley, Peter Backenist, David Slingsby and Stuart
Webb of GEC/CEGELEC, Peter Houldsworth, Paul Judge, Allan
Norbury, Dickon Purvis, Paul Brett and Allan Roworth of Siemens,
and Craig Rousell who all assisted with information on their machines,
commented constructively on my thoughts and provided material and
photographs.

My fellow engineers at Sheerness Steel also deserve some praise for
tolerating my PLC systems (and who will no doubt compare my written
aims with our actual achievements!). 

A book takes some time to write, and my family deserve considerable
thanks for their patience.

Andrew Parr
Minster on Sea

eaparr2002@yahoo.co.uk

Note for second edition 

This revision incorporates additional material covering recent develop-
ments, and reflects the increasing importance of health and safety
legislation. 

Notes for third edition 

This edition includes a new chapter giving example ladder rungs for
common industrial problems. Screen shots of Windows based program-
ming software have been included to show how programs are entered.
Health and Safety issues, particularly the introduction of IEC 61508,
have been updated.
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1 Computers and industrial 
control 

1.1 Introduction 
Very few industrial plants can be left to run themselves, and most need
some form of control system to ensure safe and economical operation.
Figure 1.1 is thus a representation of a typical installation, consisting of
a plant connected to a control system. This acts to translate the commands
of the human operator into the required actions, and to display the plant
status back to the operator. 

At the simplest level, the plant could be an electric motor driving
a cooling fan. Here the control system would be an electrical starter
with protection against motor overload and cable faults. The operator
controls would be start/stop pushbuttons and the plant status displays
simply running/stopped and fault lamps. 

At the other extreme, the plant could be a vast petrochemical
installation. Here the control system would be complex and a mixture
of technologies. The link to the human operators will be equally varied,
with commands being given and information displayed via many
devices. 

In most cases the operator will be part of the control system. If an
alarm light comes on saying ‘Low oil level’ the operator will be expected
to add more oil. 

1.2 Types of control strategies 
It is very easy to be confused and overwhelmed by the size and
complexity of large industrial processes. Most, if not all, can be
simplified by considering them to be composed of many small sub-
processes. These sub-processes can generally be considered to fall into
three distinct areas. 
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2 Programmable Controllers

1.2.1 Monitoring subsystems 

These display the process state to the operator and draw attention to
abnormal or fault conditions which need attention. The plant condition
is measured by suitable sensors. 

Digital sensors measure conditions with distinct states. Typical
examples are running/stopped, forward/off/reverse, fault/healthy,
idle/low/medium/high, high level/normal/low level. Analog sensors
measure conditions which have a continuous range such as temperature,
pressure, flow or liquid level. 

The results of these measurements are displayed to the operator via
indicators (for digital signals) or by meters and bargraphs for analog
signals. 

The signals can also be checked for alarm conditions. An overtravel
limit switch or an automatic trip of an overloaded motor are typical
digital alarm conditions. A high temperature or a low liquid level could
be typical analog alarm conditions. The operator could be informed of
these via warning lamps and an audible alarm. 

A monitoring system often keeps records of the consumption of
energy and materials for accountancy purposes, and produces an event/
alarm log for historical maintenance analysis. A pump, for example,
may require maintenance after 5000 hours of operation. 

1.2.2 Sequencing subsystems 

Many processes follow a predefined sequence. To start the gas burner
of Figure 1.2, for example, the sequence could be: 

Figure 1.1 A simple view of a control system 
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Computers and industrial control 3

(a) Start button pressed; if sensors are showing sensible states (no air
flow and no flame) then sequence starts. 

(b) Energize air fan starter. If starter operates (checked by contact on
starter) and air flow is established (checked by flow switch) then 

(c) Wait two minutes (for air to clear out any unburnt gas) and then 
(d) Open gas pilot valve and operate igniter. Wait two seconds and

then stop igniter and 
(e) If flame present (checked by flame failure sensor) open main gas

valve. 
(f) Sequence complete. Burner running. Stays on until stop button

pressed, or air flow stops, or flame failure. 

The above sequence works solely on digital signals, but sequences can
also use analog signals. In the batch process of Figure 1.3 analog sensors
are used to measure weight and temperature to give the sequence: 

1 Open valve V1 until 250kg of product A have been added. 
2 Start mixer blade. 
3 Open valve V2 until 310kg of product B have been added. 
4 Wait 120 s (for complete mixing). 
5 Heat to 80 °C and maintain at 80 °C for 10 min. 
6 Heater off. Allow to cool to 30 °C. 
7 Stop mixer blade. 
8 Open drain valve V3 until weight less than 50kg. 

Figure 1.2 Gas-fired burner, a sequence control system 
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4 Programmable Controllers

1.2.3 Closed loop control subsystems 

In many analog systems, a variable such as temperature, flow or
pressure is required to be kept automatically at some preset value or
made to follow some other signal. In step 5 of the batch sequence above,
for example, the temperature is required to be kept constant to 80 °C
within quite narrow margins for 10 minutes. 

Such systems can be represented by the block diagram of Figure 1.4.
Here a particular characteristic of the plant (e.g. temperature) denoted
by PV (for process variable) is required to be kept at a preset value SP (for
setpoint). PV is measured by a suitable sensor and compared with the
SP to give an error signal 

error = SP − PV (1.1) 

If, for example, we are dealing with a temperature controller with
a setpoint of 80°C and an actual temperature of 78 °C, the error is 2 °C. 

This error signal is applied to a control algorithm. There are many
possible control algorithms, and this topic is discussed in detail in
Chapter 4, but a simple example for a heating control could be ‘If the
error is negative turn the heat off, if the error is positive turn the heat on.’ 

The output from the control algorithm is passed to an actuator which
affects the plant. For a temperature control, the actuator could be
a heater, and for a flow control the actuator could be a flow control valve.

Figure 1.3 A batch process 
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Computers and industrial control 5

The control algorithm will adjust the actuator until there is zero error, i.e.
the process variable and the setpoint have the same value. 

In Figure 1.4, the value of PV is fed back to be compared with the
setpoint, leading to the term ‘feedback control’. It will also be noticed
that the block diagram forms a loop, so the term ‘closed loop control’ is
also used. 

Because the correction process is continuous, the value of the
controlled PV can be made to track a changing SP. The air/gas ratio
for a burner can thus be maintained despite changes in the burner
firing rate. 

1.2.4 Control devices 

The three types of control strategy outlined above can be achieved in
many ways. Monitoring/alarm systems can often be achieved by
connecting plant sensors to displays, indicators and alarm annunciators.
Sometimes the alarm system will require some form of logic. For
example, you only give a low hydraulic pressure alarm if the pumps
are running, so a time delay is needed after the pump starts to allow the
pressure to build up. After this time, a low pressure causes the pump to
stop (in case the low pressure has been caused by a leak). 

Sequencing systems can be built from relays combined with timers,
uniselectors and similar electromechanical devices. Digital logic (usually
based on TTL or CMOS integrated circuits) can be used for larger
systems (although changes to printed circuit boards are more difficult
to implement than changes to relay wiring). Many machine tool
applications are built around logic blocks: rail-mounted units containing
logic gates, storage elements, timers and counters which are linked by
terminals on the front of the blocks to give the required operation. As
with a relay system, commissioning changes are relatively easy to
implement. 

Closed loop control can be achieved by controllers built around DC
amplifiers such as the ubiquitous 741. The ‘three-term controller’

Figure 1.4 A closed loop control system 
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6 Programmable Controllers

(described further in Chapter 4) is a commercially available device that
performs the function of Figure 1.4. In the chemical (and particularly
the petrochemical) industries, the presence of potentially explosive
atmospheres has led to the use of pneumatic controllers, with the signals
in Figure 1.4 being represented by pneumatic pressures. 

1.3 Enter the computer 
A computer is a device that performs predetermined operations on
input data to produce new output data, and as such can be represented
by Figure 1.5(a). For a computer used for payroll calculations the input
data would be employees’ names, salary grades and hours worked.
These data would be operated on according to instructions written to
include current tax and pension rules to produce output data in the
form of wage slips (or, today, more likely direct transfers to bank
accounts). 

Early computer systems were based on commercial functions: payroll,
accountancy, banking and similar activities. The operations tended to
be batch processes, a daily update of stores stock, for example. 

The block diagram of Figure 1.5(a) has a close relationship with the
control block of Figure 1.1, which could be redrawn, with a computer pro-
viding the control block, as in Figure 1.5(b). Note that the operator’s
actions (e.g. start process 3) are not instructions, they are part of the
input data. The instructions will define what action is to be taken as the
input data (from both the plant and the operator) change. The output
data are control actions to the plant and status displays to the operator. 

Early computers were large, expensive and slow. Speed is not that
important for batch-based commercial data processing (commercial

Figure 1.5 The computer in industrial control: (a) a simple overview of 
a computer; (b) the computer as part of a control system 
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Computers and industrial control 7

programmers will probably disagree!) but is of the highest priority in
industrial control, which has to be performed in ‘real time’. Many emer-
gency and alarm conditions require action to be taken in fractions of a
second. 

Commercial (with the word ‘commercial’ used to mean ‘designed for
use in commerce’) computers were also based on receiving data from
punched cards and keyboards and sending output data to printers. An
industrial process requires possibly hundreds of devices to be read in
real time and signals sent to devices such as valves, motors, meters and
so on. 

There was also an environmental problem. Commercial computers are
designed to exist in an almost surgical atmosphere; dust-free and an
ambient temperature that can only be allowed to vary by a few degrees.
Such conditions can be almost impossible to achieve close to a manufac-
turing process. 

The first industrial computer application was probably a monitoring
system installed in an oil refinery in Port Arthur, USA in 1959. The reli-
ability and mean time between failure of computers at this time meant
that little actual control was performed by the computer, and its role
approximated to the earlier Section 1.2.1. 

1.3.1 Computer architectures 

It is not essential to have intimate knowledge of how a computer works
before it can be used effectively, but an appreciation of the parts of a com-
puter is useful for appreciating how a computer can be used for industrial
control. 

Figure 1.5(a) can be expanded to give the more detailed layout of
Figure 1.6. This block diagram (which represents the whole computing
range from the smallest home computer to the largest commercial
mainframe) has six portions: 

1 An input unit where data from the outside world are brought into the
computer for processing. 

2 A store, or memory, which will be used to store the instructions the
computer will follow and data for the computer to operate on. These
data can be information input from outside or intermediate results
calculated by the machine itself. The store is organized into a
number of boxes, each of which can hold one number and is identi-
fied by an address as shown in Figure 1.7. Computers work inter-
nally in binary (see the Appendix for a description of binary,
hexadecimal (hex) and other number systems) and the store does
not distinguish between the meanings that could be attached to the
data stored in it. For example, in an 8-bit computer (which works
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8 Programmable Controllers

with numbers 8 bits long in its store) the number 01100001 can be
interpreted as: 
(a) The decimal number 97. 
(b) The hex number 61 (see Appendix). 
(c) The letter ‘a’ (see Chapter 6). 
(d) The state of eight digital signals such as limit switches. 
(e) An instruction to the computer. If the machine was the old Z80

microprocessor, hex 61 moves a number between two internal
stores. 

A typical desktop computer will use 16-bit numbers (called a 16-bit
word) and have over a million store locations. The industrial computers
we will be mainly discussing have far smaller storage, 32000 to 64000

Figure 1.6 The component parts of a computer 

Figure 1.7 A simple view of a computer’s store 
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Computers and industrial control 9

store locations being typical for larger control machines, but even
smaller machines with just 1000 store locations are common. 

3 Data from the store can be accessed very quickly, but commercial
computers often need vast amounts of storage to hold details such as
bank accounts or names and addresses. This type of data is not
required particularly quickly and is held in external storage. This is
usually magnetic disks or tapes and is called secondary or backing
storage. Such stores are not widely used on the types of computer
we will be discussing. 

4 An output unit where data from the computer are sent to the outside
world. 

5 An arithmetic and logical unit (called an ALU) which performs
operations on the data held in the store according to the instructions
the machine is following. 

6 A control unit which links together the operations of the other five
units. Often the ALU and the control unit are known, together, as
the central processor unit or CPU. A microprocessor is a CPU in a
single integrated circuit. 

The instructions the computer follows are held in the store and, with
a few exceptions which we will consider shortly, are simply followed
in sequential order as in Figure 1.8(a). 

The control unit contains a counter called an instruction register (or IR)
which says at which address in the store the next instruction is to be

Figure 1.8 Program flow in a computer: (a) simple sequential flow; 
(b) conditional jump; (c) subroutine call 
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10 Programmable Controllers

found. Sometimes the name program counter (and the abbreviation PC)
is used. 

When each instruction is obeyed, the control unit reads the store
location whose address is held in the IR. The number held in this store
location tells the control unit what instruction is to be performed. 

Instructions nearly always require operations to be performed on
data in the store (e.g. add two numbers) so the control unit will bring
data from the store to the ALU and perform the required function. 

When the instruction has been executed, the control unit will
increment the IR so it holds the address of the next instruction. 

There are surprisingly few types of instruction. The ones available on
most microprocessors are variations on: 

1 Move data from one place to another (e.g. input data to a store
location, or move data from a store location to the ALU). 

2 ALU operations on two data items, one in the ALU and one in
a specified store location. Operations available are usually add,
subtract, and logical operations such as AND, OR. 

3 Jumps. In Figure 1.8(a) we implied that the computer followed a simple
sequential list of instructions. This is usually true, but there are occa-
sions where simple tests are needed. These usually have the form 

IF (some condition) THEN 
Perform some instructions 

ELSE 
Perform some other instructions 

To test a temperature, for example, we could write 

IF Temperature is less than 75 °C THEN 
Turn healthy light on 
Turn fault light off 

ELSE 
Turn healthy light off 
Turn fault light on 

Such operations use conditional jumps. These place a new address
into the IR dependent on the last result in the accumulator.
Conditional jumps can be specified to occur for outcomes such as
result positive, result negative or result zero, and allow a program to
follow two alternative routes as shown in Figure 1.8(b). 

4 Subroutines. Many operations are required time and time again within
the same program. In an industrial control system using flows
measured by orifice plates, a square root function will be required
many times (flow is proportional to the square root of the pressure drop
across the orifice plate). Rather than write the same instruction sev-
eral times (which is wasteful of effort and storage space) a subroutine
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Computers and industrial control 11

instruction allows different parts of the program to temporarily
transfer operations to a specified subroutine, returning to the instruc-
tion after the subroutine call as shown in Figure 1.8(c). 

1.3.2 Machine code and assembly language programming 

The series of instructions that we need (called a ‘program’) has to be
written and loaded into the computer. At the most basic level, called
machine code programming, the instructions are written into the machine
in the raw numerical form used by the machine. This is difficult to do,
prone to error, and almost impossible to modify afterwards. 

The sequence of numbers 

16 00 58 21 00 00 06 08 29 17 D2 0E 40 19 05 C2 08 40 C9 

genuinely are the instructions for a multiplication subroutine starting at
address 4000 for a Z80 microprocessor, but even an experienced Z80
programmer would need reference books (and a fair amount of time) to
work out what is going on with just these 19 numbers. 

Assembly language programming uses mnemonics instead of the raw
code, allowing the programmer to write instructions that can be rela-
tively easily followed. For example, with 

LOAD Temperature 
SUB 75 
JUMP POSITIVE to Fault_Handler 

it is fairly easy to work out what is happening. 
A (separate) computer program called an assembler converts the

programmer’s mnemonic-based program (called the source) into an
equivalent machine code program (called the object) which can then
be run. 

Writing programs in assembly language is still labour-intensive,
however, as there is one assembly language instruction for each
machine code instruction. 

1.3.3 High level languages 

Assembly language programming is still relatively difficult to write, so
ways of writing computer programs in a style more akin to English
were developed. This is achieved with so-called ‘high level languages’
of which the best known are probably Pascal, FORTRAN and the
ubiquitous BASIC (and there are many, many languages: RPG,
FORTH, LISP, CORAL and C to name but a few, each with its own
attractions). 
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12 Programmable Controllers

In a high level language, the programmer writes instructions in some-
thing near to English. The Pascal program below, for example, gives a
printout of a requested multiplication table. 

program multtable (input, output); 
var number, count : integer 
begin 
readln (‘Which table do you want’, number); 
for count = 1 to 10 do 
writeln (count, ‘times’, number, ‘is’, count*number); 
end. (of program) 

Even though the reader may not know Pascal, the operation of the
program is clear (if asked to change the table from a ten times table to
a twenty times table, for example, it is obvious which line would need
to be changed). 

A high level language source program can be made to run in two
distinct ways. A compiler is a program which converts the entire high
level source program to a machine code object program offline. The
resultant object program can then be run independently of the source
program or the compiler. 

With an interpreter, the source program and the interpreter both
exist in the machine when the program is being run. The interpreter
scans each line of source code, converting them to equivalent machine
code instructions as they are obeyed. There is no object program with
an interpreter. 

A compiled program runs much faster than an interpreted program
(typically five to ten times as fast because of the extra work that the inter-
preter has to do) and the compiled object program will be much smaller
than the equivalent source code program for an interpreter. Compilers
are, however, much less easy to use, a typical sequence being: 

1 A text editor is loaded into the computer. 
2 The source program is typed in or loaded from disk (for modification). 
3 The resultant source file is saved to disk. 
4 The compiler is loaded from disk and run. 
5 The source file is loaded from disk. 
6 Compilation starts (this can take several minutes). If any errors are

found go back to step 1. 
7 An object program is produced which can be saved to disk and/or

run. If any runtime errors are found, go back to step 1. 

An interpreted language is much easier to use, and for many applications
the loss of speed is not significant. BASIC is usually an interpreted
language; Pascal, C and Fortran are usually compiled. Figure 1.9 sum-
marizes the operation of compiled and interpreted high level languages. 
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Figure 1.9 Compiled and interpreted high level languages: 
(a) compiled program (e.g. Pascal, C); (b) interpreter 
(e.g. most BASICs) 
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14 Programmable Controllers

1.3.4 Application programs 

Increasingly, as computers become more widespread, many programs
have been written which allow the user to define the tasks to be
performed without worrying unduly about how the computer achieves
them. These are known as application programs and are typified
by spreadsheets such as Lotus 123 and Excel and databases such as
Approach and Access. In these the user is defining complex mathematical
or database operations without ‘programming’ the computer in a conven-
tional sense. 

1.3.5 Requirements for industrial control 

Industrial control has rather different requirements than other applica-
tions. It is worth examining these in some detail. 

A conventional computer, shown schematically in Figure 1.10(a),
takes data usually from a keyboard and outputs data to a VDU screen
or printer. The data being manipulated will generally be characters or
numbers (e.g. item names and quantities held in a stores stock list). 

The control computer of Figure 1.10(b) is very different. Its inputs
come from a vast number of devices. Although some of these are
numeric (flows, temperature, pressures and similar analog signals) most
will be single-bit, on/off, digital signals. 

Figure 1.10 The difference between commercial and industrial 
computers: (a) commercial computer; (b) industrial control computer 
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There will also be a similarly large amount of digital and analog
output signals. A very small control system may have connections to
about 20 input and output signals; figures of over 200 connections are
quite common on medium-sized systems. The keyboard, VDU and
printer may exist, but they are not necessary, and their functions will
probably be different to those on a normal desktop or mainframe
computer. 

Although it is possible to connect this quantity of signals to a conven-
tional machine, it requires non-standard connections and external boxes.
Similarly, although programming for a large amount of input and
output signals can be done in Pascal, BASIC or C, the languages are
being used for a purpose for which they were not really designed, and
the result can be very ungainly. 

In Figure 1.11(a), for example, we have a simple motor starter. This
could be connected as a computer-driven circuit as in Figure 1.11(b).
The two inputs are identified by addresses 1 and 2, with the output (the
relay starter) being given the address 10. 

If we assume that a program function bitread (N) exists which gives
the state (on/off) of address N, and a procedure bitwrite (M,var) which sends
the state of program variable var to address M, we could give the actions of
Figure 1.11 by 

repeat 
start: = bitread(1); 
stop: = bitread(2); 

Computer

Digital input
card

Digital output
card

(b)

Stop

1

2

Start
L

Start

(supply)
L

Stop

C1

C1

C1

(a)

N

N
(neutral)

10

Figure 1.11 Comparison of hardwire and computer-based schemes: 
(a) hardwire motor starter circuit; (b) computer-based motor starter 
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16 Programmable Controllers

run: = ((start) or (run)) & stop; 
bitwrite (10,run); 

until hellfreezesover 

where start, stop and run are 1-bit variables. The program is not very
clear, however, and we have just three connections. 

An industrial control program rarely stays the same for the whole of
its life. There are always modifications to cover changes in the oper-
ations of the plant. These changes will be made by plant maintenance
staff, and must be made with minimal (preferably no) interruptions to
the plant production. Adding a second stop button and a second start
button to Figure 1.11 would not be a simple task. 

In general, computer control is done in real time, i.e. the computer
has to respond to random events as they occur. An operator expects a
motor to start (and more important to stop!) within a fraction of a second
of the button being pressed. Although commercial computing needs
fast computers, it is unlikely that the difference between one and
two second computation time for a spreadsheet would be noticed by the
user. Such a difference would be unacceptable for industrial control. 

Time itself is often part of the control strategy (e.g. start air fan, wait
10 s for air purge, open pilot gas valve, wait 0.5 s, start ignition spark,
wait 2.5 s, if flame present open main gas valve). Such sequences are
difficult to write with conventional languages. 

Most control faults are caused by external items (limit switches, solen-
oids and similar devices) and not by failures within the central control
itself. The permission to start a plant, for example, could rely on signals
involving cooling water flows, lubrication pressure, or temperatures
within allowable ranges. For quick fault finding the maintenance staff
must be able to monitor the action of the computer program whilst it is
running. If, as is quite common, there are ten interlock signals which
allow a motor to start, the maintenance staff will need to be able to
check these quickly in the event of a fault. With a conventional computer,
this could only be achieved with yet more complex programming. 

The power supply in an industrial site is shared with many antisocial
loads; large motors stopping and starting, thyristor drives which put
spikes and harmonic frequencies onto the mains supply. To a human
these are perceived as light flicker; in a computer they can result in storage
corruption or even machine failure. 

An industrial computer must therefore be able to live with a ‘dirty’ mains
supply, and should also be capable of responding sensibly following a total
supply interruption. Some outputs must go back to the state they were in
before the loss of supply; others will need to turn off or on until an operator
takes available corrective action. The designer must have the facility to define
what happens when the system powers up from cold. 
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The final considerations are environmental. A large mainframe com-
puter generally sits in an air-conditioned room at a steady 20 °C with
carefully controlled humidity. A desktop PC will normally live in a fairly
constant environment because human beings do not work well at
extremes. An industrial computer, however, will probably have to operate
away from people in a normal electrical substation with temperatures as
low as −10 °C after a winter shutdown, and possibly over 40 °C in the
height of summer. Even worse, these temperature variations lead to a
constant expansion and contraction of components which can lead to
early failure if the design has not taken this factor into account. 

To these temperature changes must be added dust and dirt. Very few
industrial processes are clean, and the dust gets everywhere (even with
IP55 cubicles, because an IP55 cubicle is only IP55 when the doors are
shut and locked; IP ratings are discussed in Section 8.4.2). The dust will
work itself into connectors, and if these are not of the highest quality,
intermittent faults will occur which can be very difficult to find. 

In most computer applications, a programming error or a machine
fault can at worst be expensive and embarrassing. When a computer
controlling a plant fails, or a programmer misunderstands the plant’s
operation, the result could be injuries or fatalities. Under the UK Health
and Safety at Work Act, prosecution of the design engineers could
result. It behoves everyone to take extreme care with the design. 

Our requirements for an industrial control computer are very
demanding, and it is worth summarizing them: 

1 They should be designed to survive in an industrial environment
with all that this implies for temperature, dirt and poor-quality mains
supply. 

2 They should be capable of dealing with bit-form digital input/output
signals at the usual voltages encountered in industry (24V DC
to 240 V AC) plus analog input/output signals. The expansion of the
I/O should be simple and straightforward. 

3 The programming language should be understandable by main-
tenance staff (such as electricians) who have no computer training.
Programming changes should be easy to perform in a constantly
changing plant. 

4 It must be possible to monitor the plant operation whilst it is running
to assist fault finding. It should be appreciated that most faults will
be in external equipment such as plant-mounted limit switches,
actuators and sensors, and it should be possible to observe the action
of these from the control computer. 

5 The system should operate sufficiently fast for realtime control. In
practice, ‘sufficiently fast’ means a response time of around 0.1 s, but
this can vary depending on the application and the controller used. 
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18 Programmable Controllers

6 The user should be protected from computer jargon. 
7 Safety must be a prime consideration. 

1.3.6 The programmable controller 

In the late 1960s the American motor car manufacturer General Motors
was interested in the application of computers to replace the relay
sequencing used in the control of its automated car plants. In 1969 it
produced a specification for an industrial computer similar to that
outlined at the end of Section 1.3.5. 

Two independent companies, Bedford Associates (later called
Modicon) and Allen Bradley, responded to General Motor’s specification.
Each produced a computer system similar to Figure 1.12 which bore
little resemblance to the commercial minicomputers of the day. 

The computer itself, called the central processor, was designed to live
in an industrial environment, and was connected to the outside world
via racks into which input or output cards could be plugged. In these
early machines there were essentially four different types of cards: 

1 DC digital input card 
2 DC digital output card 
3 AC digital input card 
4 AC digital output card 

Each card would accept 16 inputs or drive 16 outputs. A rack of eight
cards could thus be connected to 128 devices. It is very important to
appreciate that the card allocations were the user’s choice, allowing great
flexibility. In Figure 1.12(b) the user has installed one DC input card,
one DC output card, three AC input cards, and two AC output cards,
leaving one spare position for future expansion. This rack can thus be
connected to 

• 16 DC input signals 
• 16 DC output signals 
• 48 AC input signals 
• 16 AC output signals 

Not all of these, of course, need to be used. 
The most radical idea, however, was a programming language based

on a relay schematic diagram, with inputs (from limit switches, push-
buttons, etc.) represented by relay contacts, and outputs (to solenoids,
motor starters, lamps, etc.) represented by relay coils. Figure 1.13 shows
a simple hydraulic cylinder which can be extended or retracted by
pushbuttons. Its stroke is set by limit switches which open at the end of
travel, and the solenoids can only be operated if the hydraulic pump
is running. This would be controlled by the computer program of
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Figure 1.13(b) which is identical to the relay circuit needed to control the
cylinder. These programs look like the rungs on a ladder, and were
consequently called ‘ladder diagrams’. 

The program was entered via a programming terminal with keys
showing relay symbols (normally open/normally closed contacts, coils,
timers, counters, parallel branches, etc.) with which a maintenance
electrician would be familiar. Figure 1.14 shows the programmer

Figure 1.12 The component parts of a PLC system: (a) an early PLC 
system; (b) a typical rack of cards 
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keyboard for an early PLC. The meaning of the majority of the keys
should be obvious. The program, shown exactly on the screen as in
Figure 1.13(b), would highlight energized contacts and coils, allowing
the programming terminal to be used for simple fault finding. 

The processor memory was protected by batteries to prevent
corruption or loss of program during a power fail. Programs could be
stored on cassette tapes which allowed different operating procedures
(and hence programs) to be used for different products. 

The name given to these machines was ‘programmable controllers’ or
PCs. The name ‘programmable logic controller’ or PLC was also used,
but this is, strictly, a registered trademark of the Allen Bradley Company.
Unfortunately in more recent times the letters PC have come to be used

Figure 1.13 A simple PLC application. (a) A simple hydraulic cylinder 
controlled by a PLC. (b) The ‘ladder diagram’ program used to control the 
cylinder. This is based on American relay symbols. –][– means that signal 
is present, and –]/[– means that signal is not present 
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for personal computer, and confusingly the worlds of programmable
controllers and personal computers overlap where portable and lap-top
computers are now used as programming terminals. To avoid confusion,
we shall use PLC for a programmable controller and PC for a personal
computer. Section 2.12 gives examples of programming software on
modern PCs.

1.4 Input/output connections 
1.4.1 Input cards 

Internally a computer usually operates at 5V DC. The external devices
(solenoids, motor starters, limit switches, etc.) operate at voltages up to
110V AC. The mixing of these two voltages will cause severe and
possibly irreparable damage to the PLC electronics. Less obvious
problems can occur from electrical ‘noise’ introduced into the PLC from
voltage spikes on signal lines, or from load currents flowing in AC
neutral or DC return lines. Differences in earth potential between the
PLC cubicle and outside plant can also cause problems. 

The question of noise is discussed at length in Chapter 8, but there
are obviously very good reasons for separating the plant supplies from the
PLC supplies with some form of electrical barrier as in Figure 1.15. This
ensures that the PLC cannot be adversely affected by anything happening
on the plant. Even a cable fault putting 415 V AC onto a DC input would
only damage the input card; the PLC itself (and the other cards in the
system) would not suffer. 

This is achieved by optical isolators, a light-emitting diode and photo-
electric transistor linked together as in Figure 1.16(a). When current is
passed through the diode D1 it emits light, causing the transistor TR1 to

Figure 1.14 The programming terminal keypad for an early Allen 
Bradley PLC (reproduced by permission of Allen Bradley) 
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switch on. Because there are no electrical connections between the diode
and the transistor, very good electrical isolation (typically 1–4kV) is
achieved. 

A DC input can be provided as in Figure 1.16(b). When the push-
button is pressed, current will flow through D1, causing TR1 to turn on,
passing the signal to the PLC internal logic. Diode D2 is a light-emitting
diode used as a fault-finding aid to show when the input signal is present.
Such indicators are present on almost all PLC input and output cards.
The resistor R sets the voltage range of the input. DC input cards are
usually available for three voltage ranges: 5V (TTL), 12–24V, 24–50V.

A possible AC input circuit is shown in Figure 1.16(c). The bridge
rectifier is used to convert the AC to full wave rectified DC. Resistor R2
and capacitor C1 act as a filter (of about 50ms time constant) to give
a clean signal to the PLC logic. As before, a neon LP1 acts as an input
signal indicator for fault finding, and resistor R1 sets the voltage range. 

Figure 1.17(a) shows a typical input card from the Allen Bradley
range. The isolation barrier and monitoring LEDs can be clearly seen.
This card handles eight inputs and could be connected to the outside
world as in Figure 1.17(b). 

1.4.2 Output connections 

Output cards again require some form of isolation barrier to limit
damage from the inevitable plant faults and also to stop electrical ‘noise’
corrupting the processor’s operations. Interference can be more of
a problem on outputs because higher currents are being controlled by

Figure 1.15 Protection of the PLC from outside faults. The PLC supply 
L1/N1 is separate from the plant supply L2/N2 

075065757X-ch001.fm  Page 22  Wednesday, July 9, 2003  3:31 PM



Computers and industrial control 23

Figure 1.16 Optical isolation of inputs: (a) an optical isolator; 
(b) DC input card; (c) AC input card 
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Figure 1.17 A PLC input card: (a) Allen Bradley eight-way input card; 
(b) wiring of input card 
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the cards and the loads themselves are often inductive (e.g. solenoid and
relay coils). 

There are two basic types of output card. In Figure 1.18(a), eight
outputs are fed from a common supply, which originates local to the
PLC cubicle (but separate from the supply to the PLC itself). This
arrangement is the simplest and the cheapest to install. Each output has
its own individual fuse protection on the card and a common circuit
breaker. It is important to design the system so that a fault, say, on load
3 blows the fuse FS3 but does not trip the supply to the whole card,
shutting down every output. This topic, called ‘discrimination’, is
discussed further in Chapter 8. 

A PLC frequently has to drive outputs which have their own individual
supplies. A typical example is a motor control centre (MCC) where each
starter has a separate internal 110-V supply derived from the 415-V bars.
The card arrangement of Figure 1.18(a) could not be used here without
separate interposing relays (driven by the PLC with contacts into the
MCC circuit). 

An isolated output card, shown in Figure 1.18(b), has individual out-
puts and protection and acts purely as a switch. This can be connected
directly with any outside circuit. The disadvantage is that the card is
more complicated (two connections per output) and safety becomes
more involved. An eight-way isolated output card, for example, could
have voltage on its terminals from eight different locations. 

Contacts have been shown on the outputs in Figure 1.18. Relay
outputs can be used (and do give the required isolation) but are not
particularly common. A relay is an electromagnetic device with moving
parts and hence a finite limited life. A purely electronic device will have
greater reliability. Less obviously, though, a relay-driven inductive load
can generate troublesome interference and lead to early contact failure. 

A transistor output circuit is shown in Figure 1.19(a). Optical isolation
is again used to give the necessary separation between the plant and the
PLC system. Diode D1 acts as a spike suppression diode to reduce the
voltage spike encountered with inductive loads. Figure 1.19(b) shows
the effect. The output state can be observed on LED1. Figure 1.19(a) is a
current sourcing output. If NPN transistors are used, a current sinking
card can be made as in Figure 1.19(c). 

AC output cards invariably use triacs, a typical circuit being shown in
Figure 1.20(a). Triacs have the advantage that they turn off at zero
current in the load, as shown in Figure 1.20(b), which eliminates the
interference as an inductive load is turned off. If possible, all AC loads
should be driven from triacs rather than relays. 

Figure 1.21 is a photograph of the construction of AC and DC output
cards; the isolation barrier, the state indication LEDs and the protection
fuses can be clearly seen. 
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Figure 1.18 Types of output card: (a) output card with common supply; 
(b) output card with separate supplies 
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An output card will have a limit to the current it can supply, usually
set by the printed circuit board tracks rather than the output devices. An
individual output current will be set for each output (typically 2 A) and
a total overall output (typically 6 A). Usually the total allowed for the
card current is lower than the sum of the allowed individual outputs. It is

Figure 1.19 DC output circuits: (a) DC output circuit, current sourcing; 
(b) effect of spike suppression diode; (c) current sinking output 
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therefore good practice to reduce the total card current by assigning
outputs which cannot occur together (e.g. forward/reverse, fast/slow) to
the same card. 

1.4.3 Input/output identification 

The PLC program must have some way of identifying inputs and out-
puts. In general, a signal is identified by its physical location in some
form of mounting frame or rack, by the card position in this rack, and
by which connection on the card the signal is wired to. 

In Figure 1.22, a lamp is connected to output 5 on card 6 in rack 2. In
Allen Bradley notation, this is signal 

Figure 1.20 AC output circuit: (a) AC output stage – sourcing/sinking is 
irrelevant on AC outputs; (b) effect of triac output 
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O:26/05 

The pushbutton is connected to input 2 on card 5 in rack 3, and (again
in Allen Bradley notation) is 

I:35/02 

Most PLC manufacturers use a similar scheme. The topic is discussed
further in Chapter 2. 

1.5 Remote I/O 
So far we have assumed that a PLC consists of a processor unit and
a collection of I/O cards mounted in local racks. Early PLCs did tend to
be arranged like this, but in a large and scattered plant with this arrange-
ment, all signals have to be brought back to some central point in
expensive multicore cables. It will also make commissioning and fault
finding rather difficult, as signals can only be monitored effectively at
a point possibly some distance from the device being tested. 

In all bar the smallest and cheapest systems, PLC manufacturers
therefore provide the ability to mount I/O racks remote from the
processor, and link these racks with simple (and cheap) screened single

Figure 1.21 Output cards
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pair or fibre optic cable. Racks can then be mounted up to several
kilometres away from the processor. 

There are many benefits from this. It obviously reduces cable costs as
racks can be laid out local to the plant devices and only short multicore
cable runs are needed. The long runs will only need the communication
cables (which are cheap and only have a few cores to terminate at each
end) and hardwire safety signals (which should not be passed over
remote I/O cable, or even through a PLC for that matter, a topic
discussed further in Chapter 8). 

Less obviously, remote I/O allows complete units to be built, wired to
a built-in rack, and tested offsite prior to delivery and installation. The
pulpit in Figure 3.2 contains three remote racks, and connects to the
controlling PLC mounted in a substation about 500m away, via
a remote I/O cable, plus a few power supplies and hardwire safety
signals. This allowed the pulpit to be built and tested before it arrived
on site. Similar ideas can be applied to any plant with I/O that needs to
be connected to a PLC. 

Figure 1.22 Identification of plant signals
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If remote I/O is used, provision should be made for a program terminal
to be connected local to each rack. It negates most of the benefits if the
designer can only monitor the operation from a central control room
several hundred metres from the plant. Fortunately, manufacturers
have recognized this and most allow programming terminals to be
connected to the processor via similar screened twin cable. 

We will discuss serial communication further in Chapter 5. 

1.6 The advantages of PLC control 
Any control system goes through four stages from conception to
a working plant. A PLC system brings advantages at each stage. 

The first stage is design; the required plant is studied and the control
strategies decided. With conventional systems design must be complete
before construction can start. With a PLC system all that is needed is
a possibly vague idea of the size of the machine and the I/O requirements
(how many inputs and outputs). The input and output cards are cheap
at this stage, so a healthy spare capacity can be built in to allow for the
inevitable omissions and future developments. 

Next comes construction. With conventional schemes, every job is
a ‘one-off’ with inevitable delays and costs. A PLC system is simply
bolted together from standard parts. During this time the writing of the
PLC program is started (or at least the detailed program specification
is written). 

The next stage is installation, a tedious and expensive business as
sensors, actuators, limit switches and operator controls are cabled. A
distributed PLC system (discussed in Chapter 5) using serial links and
pre-built and tested desks can simplify installation and bring huge cost
benefits. The majority of the PLC program is written at this stage. 

Finally comes commissioning, and this is where the real advantages
are found. No plant ever works first time. Human nature being what it
is, there will be some oversights. Changes to conventional systems are
time consuming and expensive. Provided the designer of the PLC
system has built in spare memory capacity, spare I/O and a few spare
cores in multicore cables, most changes can be made quickly and relatively
cheaply. An added bonus is that all changes are recorded in the PLC’s
program and commissioning modifications do not go unrecorded, as is
often the case in conventional systems. 

There is an additional fifth stage, maintenance, which starts once the
plant is working and is handed over to production. All plants have
faults, and most tend to spend the majority of their time in some form of
failure mode. A PLC system provides a very powerful tool for assisting
with fault diagnosis. This topic is discussed further in Chapter 8. 
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A plant is also subject to many changes during its life to speed pro-
duction, to ease breakdowns or because of changes in its requirements.
A PLC system can be changed so easily that modifications are simple
and the PLC program will automatically document the changes that
have been made. 
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2 Programming techniques

2.1 Introduction
Chapter 1 described the evolution of the programmable controller leading
to a system similar to that of Figure 1.12. This consists of a CPU linked
to one or more I/O racks. These racks contain cards which are connected
to the plant signals.

There are many variations on the details of Figure 1.12. Modern
central processors tend to be small, live in one of the racks, and not be
readily identifiable. In the smallest systems every part has been encapsu-
lated in one unit. All, however, behave as in Figure 1.12.

In this chapter we shall consider how a PLC can be programmed.
Each manufacturer, of course, has its own standards and it would be
rather restrictive to deal with only one machine. This chapter is therefore
written around five manufacturers’ ranges:

1 The Allen Bradley PLC-5 series (Figure 2.1(a)). Allen Bradley, now
owned by Rockwell, were one of the original PLC originators (and
actually have the USA copyright on the name PLC). They have
been responsible for much of the development of the ideas used in
PLCs and have succeeded in maintaining a fair degree of upward
compatibility from their earliest machine without restricting the fea-
tures of the latest.

2 The Siemens Simatic S5 range (Figure 2.1(b)) which has become
widely used in Europe in the early part of the 1990s.

3 The British GEM-80 (Figure 2.1(c)), originally designed by GEC
through a long association with industrial computers dating back to
English Electric. This part of GEC is now known as CEGELEC and
is part of a French group in which Alsthom is a major shareholder.

4 The ASEA Master System (Figure 2.1(d)), now manufactured by the
ABB company formed by the merger of ASEA and Brown Boveri.
The Master System has features more akin to a conventional computer
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(a)

(b)

Figure 2.1 The four medium-sized PLCs discussed: (a) the Allen Bradley
PLC-5; (b) the Siemens S5-1154;
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(c)

(d)

Figure 2.1 (continued) (c) the CEGELEC GEM-80; (d) the ABB Master.
Photographs courtesy of the manufacturers

075065757X-ch002.fm Page 35 Friday, July 25, 2003 2:49 PM



36 Programmable Controllers

system and its programming language has some interesting and
powerful features.

5 Many PLC systems are now very small; the author recently found it
cost-effective to build a system with a PLC rather than the 12 four-
pole relays that could have been conventionally used. There are
many cheap small machines, and as an example of this bottom end
of the market we shall consider the Japanese Mitsubishi F2-40,
shown later in Figure 2.12.

Significant differences will be found in this selection (a PLC-5, for
example, has three different types of timer, the Siemens 115-U has five
timers, and a GEM-80 just one, which, because of its different approach,
can be used in various ways). Between them most of the standards
adopted by other manufacturers will be covered.

2.2 The program scan
A PLC program can be considered to behave as a permanent running
loop similar to that in Figure 2.2(a). The user’s instructions are obeyed
sequentially, and when the last instruction has been obeyed the operation
starts again at the first instruction. A PLC does not, therefore, communicate
continuously with the outside world, but acts, rather, by taking ‘snapshots’.

The action of Figure 2.2(a) is called a program scan, and the period of
the loop is called the program scan time. This depends on the size of the
PLC program and the speed of the processor, but is typically 2–5ms per
K of program. Average scan times are usually around 10–50ms.

Figure 2.2 PLC program scan and memory organization: (a) PLC
operation; (b) program sequence; (c) PLC memory organization
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Figure 2.2(a) can be expanded to Figure 2.2(b). The PLC does not
read inputs as needed (as implied by Figure 2.2(a)) as this would be
wasteful of time. At the start of the scan it reads the state of all the con-
nected inputs and stores their state in the PLC memory. When the PLC
program accesses an input, it reads the input state as it was at the start of
the current program scan.

As the PLC program is obeyed through the scan, it again does not
change outputs instantly. An area of the PLCs memory corresponding
to the outputs is changed by the program, then all the outputs are
updated simultaneously at the end of the scan. The action is thus: read
inputs, scan program, update outputs.

The PLC memory can be considered to consist of four areas as
shown in Figure 2.2(c). The inputs are read into an input mimic area at
the start of the scan, and the outputs updated from the output mimic
area at the end of the scan. There will be an area of memory reserved
for internal signals which are used by the program but are not connected
directly to the outside world (timers, counters, storage bits, e.g. fault
signals, and so on). These three areas are often referred to as the data
table (Allen Bradley) or the database (ASEA/ABB).

This data area is smaller than may be at first thought. A medium-size
PLC system will have around 1000 inputs and outputs. Stored as indi-
vidual bits this corresponds to just over 60 storage locations in a PLC
with a 16-bit word. An analog value read from the plant or written to
the plant will take one word. Timers and counters take two words (one
for the value, and one for the preset) and 16 internal storage bits take
just one word. The majority of the store, therefore, is taken up by the
fourth area, the program itself.

The program scan obviously limits the speed of signals to which
a PLC can respond. In Figure 2.3(a) a PLC is being used to count a series
of fast pulses, with the pulse rate slower than the scan rate. The PLC
counts correctly. In Figure 2.3(b) the pulse rate is faster than the scan
rate and the PLC starts to miscount and miss pulses. In the extreme case
of Figure 2.3(c) whole blocks of pulses are totally ignored.

In general, any input signal that a PLC reads must be present for
longer than the scan time; shorter pulses may be read if they happen to
be present at the right time but this cannot be guaranteed. If pulse trains
are being observed, the pulse frequency must be slower than 1/(2 × scan
period). A PLC with a scan period of 40 ms can, in theory, just about
follow a pulse train of 1/(2 × 0.04) = 12.5 Hz. In practice other factors
such as filters on the input cards have a significant effect and it is always
advisable to be conservative in speed estimates.

Less obviously, the PLC scan can cause a random ‘skew’ between
inputs and outputs. In Figure 2.4 an input is to cause an ‘immediate’
output. In the best case of Figure 2.4(a), the input occurs just at the start
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of the scan, resulting in the energization of the output one scan period
later. In Figure 2.4(b) the input has arrived just after the inputs are read,
and one whole scan is lost before the PLC ‘sees’ the input, and the rest
of the second scan passes before the output is energized. The response
can thus vary between one and two scan periods.

In the majority of applications this skew of a few tens of milliseconds
is not important (it cannot be seen, for example, in the response of a plant

Figure 2.3 The effect of program scan on fast pulses

Figure 2.4 The effect of program scan on response time: (a) best case;
(b) worst case

075065757X-ch002.fm Page 38 Friday, July 25, 2003 2:49 PM



Programming techniques 39

to pushbuttons). Where fast actions are needed, however, it can be crucial.
In a typical example, seen by the author, material travelling at 15 m/s
was being cut by a PLC with the initiation being given by a photocell.
The 30-ms scan time of the PLC resulted in a 0.03 × 15 000 = 450-mm
variation in cut length.

PLC manufacturers provide special cards (which are really small
processors in their own right) for dealing with this type of high-speed
application. We will return to these in Sections 4.7 and 4.8.

The layout of the PLC program itself can result in undesirable delays
if the program logic flows against the PLC program scan. The PLC
starts at the first instruction for each scan, and works its way through
the instructions in a sequential manner to the end of the program. It
then does its output update, goes to read its inputs and runs through the
program again.

In Figure 2.5(a), an input causes an output, but it goes through five
steps first (it could be stepping a counter or seeing if some other
required conditions are present). The program logic, however, is flowing
against the scan. On the first scan the input causes event A. On the next
scan event A causes event B and so on until after five scans event D
causes the output to energize. If the program had been arranged as in
Figure 2.5(b) the whole sequence would have occurred in one single
scan.

The failings of Figure 2.5(a) are self-evident, but the effect can often
occur when the layout of the program is not carefully planned. The
effect can also be used deliberately to produce very short (one-scan)
pulses, a topic discussed in Section 6.4.

The effect of scan times can become even more complex when
remote serially scanned I/O racks are present. These are generally read
by an I/O scanner as in Figure 2.6, but the I/O scanner is not usually
synchronized to the program scan. In this case with, say, a program

Figure 2.5 Compounding of program scan delays: (a) logic against
program flow, five scans from input to output; (b) logic with program
flow, one scan from input to output
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scan of 30ms and a remote I/O scan of 50 ms, the fastest response could
be 30 ms, but the slowest response (with an input just missing the I/O
scan and the I/O scan just missing the program scan) could be 130ms.

PLC manufacturers offer many facilities to reduce the effect of scan
times. Typical are intelligent high-speed independent I/O cards (dis-
cussed in Sections 4.7 and 4.8) and the ability to sectionalize the pro-
gram into areas with different scan rates (desk lights, for example,
probably only need a 0.5–1-s response, allowing other parts of the pro-
gram to operate faster). Section 3.6 describes in more detail further
methods to minimize the PLC scan time.

2.3 Identification of input/output and bit addresses
2.3.1 Racks, cards and signals

The PLC program is concerned with connections to the outside plant,
and the input and output devices need to be identified inside the program.
Before we can examine how the program is written we will first discuss
how various manufacturers treat the I/O.

Figure 1.22 showed that a medium-sized PLC system consists of several
racks, each containing cards, with each card interfacing generally to 8, 16
or 32 devices. I/O addressing is usually based on this rack/card/bit idea.

Figure 2.6 The effect of program and I/O scan cycles
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2.3.2 Allen Bradley PLC-5

The Allen Bradley PLC-5 can have up to eight racks in its 5/25 version.
The rack containing the processor is automatically defined as rack 0,
but the designer can allocate addresses of the other racks (in the range
1–7) by set-up switches. The racks other than rack 0 connect to the
processor via a remote I/O serial communications cable.

There are three different ways in which an Allen Bradley rack can be
configured, but we shall discuss the simplest (and possibly the most logical)
method.

Each rack contains 16 card positions which are grouped in pairs
called a ‘slot’. A rack thus contains eight slots, numbered 0–7. A slot can
contain one 16-way input card and one 16-way output card or two eight-
way cards usually (but not necessarily) of the same type. In Figure 2.7,
for example, slot 1 contains a 16-way input card and 16-way output
card, and slot 2 contains two eight-way output cards.

Reasons why eight-way cards may be preferred to 16-way output
cards are discussed in Chapter 8.

The addressing for inputs is

I:Rack Slot/Bit

with Bit being two digits. Allen Bradley use octal addressing for bits,
so allowable numbers are 00–07 and 10–17. The address I:27/14
is input 14 on slot 7 in rack 2. Outputs are addressed in a similar
manner:

Figure 2.7 Allen Bradley PLC-5 card layout
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O:Rack Slot/Bit

so O:35/06 is output 6 in slot 5 of rack 2. Note that if 16-way cards are
used, an input and an output can have the same rack/slot/bit address,
being distinguished only by the I: or the O:. With eight-way cards there
can be no sharing of rack/slot/bit addressing. Figure 1.12 earlier showed
the addressing of several signals.

2.3.3 Siemens SIMATIC S5

The digital I/O in Siemens PLCs is arranged into groups of 8 bits, called
a byte (see Appendix). A signal is identified by its bit number (0–7) and
its byte number (0–127). Inputs are denoted I< byte > . < bit > and out-
puts by Q< byte > . < bit> . I9.4 is thus an input with bit address 4 in
byte 9, and Q63.6 is an output with bit address 6 in byte 63.

Like Allen Bradley, Siemens use card slots in one or more racks. The
cards are available in 16-bit (2-byte) or 32-bit (4-byte) form. A system
can be built with local racks connected via a parallel bus cable or as
remote racks with a serial link. Local racks are faster and overcome
some of the scan problems associated with serially connected remote
racks in high-speed applications, but are, literally, local. They can be no
more than a few metres from the processor.

The simplest form of addressing is fixed slot, shown in Figure 2.8(a).
Four bytes are assigned sequentially to each slot; 0–3 to the first slot,
4–7 to the next slot and so on. Input 12.4 is thus input bit 4 on the first
byte of the card in slot 3 of the first rack. If 16-bit (2-byte) cards are used
with fixed (4-byte) addressing, the upper 2 bytes in each slot are lost.

In all bar the simplest system the user has the ability to assign byte
addresses. This is known as variable slot addressing. The first byte
address and the range (2 byte for 16-bit cards or 4 byte for 32-bit cards)
can be set independently for each slot by switches in the adaptor module
in each rack. Although any legitimate combination can be set up, it is rec-
ommended that a logical order is used similar to that in Figure 12.4(b).

Siemens use different notations in different countries with multilingual
programming terminals. A common European standard is German,
where E (for Eingang or input) is used for inputs (e.g. E4.7) and A (for
Ausgang) is used for outputs (e.g. A3.5).

2.3.4 CEGELEC GEM-80

The GEM-80 again configures its I/O in terms of bits and slots within
racks. The processor rack can contain eight card positions, and add-
itional I/O can be connected into 12 position racks local to the processor
via a ribbon cable (called basic I/O) or remotely via a serial link. Where
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a small amount of remote I/O is needed, compact 8-in/8-out units can be
used rather than racks as shown in Figure 2.9. In addition to the basic
I/O structure, a verification I/O highway is also available which allows
the processor to check the state of the various modules.

The I/O is addressed in terms of 16-bit words, one word corresponding
to one or two card positions, with the prefix A being used for inputs and
B for outputs. The bit addressing runs in decimal from 0 to 15.

A3.12 is thus input bit 12 in word 3

and

B5.04 is output bit 4 in word 5

Figure 2.8 Siemens card layout. (a) Fixed slot addressing. (b) Variable
slot addressing. Switches set address and number of bytes (2 or 4)
per card. Sequential addressing (as above) is not mandatory but is
recommended
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Figure 2.9 (a) Structure of a GEM-80 system. (b) GEM smart remote
I/O units
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A word can only be an input or an output; duplication of word
addresses is not allowed. I/O cards are available in 8-bit, 16-bit and
32-bit form, so one slot can be half a word, one word or two words
according to the cards being used. Individual slot addresses are set by
rotary switches on the back plane of each rack. The user has a more
or less free choice in this allocation, but as usual it is best to use a
logical sequential progression. Figure 2.10 shows a typical small
arrangement.

2.3.5 ABB Master

The ABB (originally ASEA) Master system is a more complex system
than any we have discussed so far. Its organization brings the user closer
to the computer, and its language is more akin to the ideas used by
programmers. If the PLCs discussed so far are taken to be represented
by the home computer language BASIC, the ABB Master is analogous
to Pascal or C. This comparison is actually closer than might, at first, be
thought. BASIC is quick and easy to use, but can degenerate into a web
of spaghetti programming if care is not taken. Pascal and C are more
powerful but everything has to be declared and the language forces
organization and structure on the user.

The Master system is arranged with processor cards and racks as in
Figure 2.11(a). Each I/O card has two back connectors, the top connecting

Figure 2.10 GEM-80 addressing with 8-bit cards
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to the processor bus and the lower to a separate terminal block, one per
card, which is mounted on the back plane of the cubicle.

The I/O cards are not identified by position in the rack, but by an
address set on the card by a small plug with solder links. The I/O
addressing does not, therefore, relate to card position, and a card can, in
theory, be moved about (with its lower connector socket, of course)
without changing its operation.

The processor memory is arranged as in Figure 2.11(b). The I/O is
connected to a processor database, but unlike PLCs described earlier,
the designer can specify different scan rates for different cards.

The designer also has considerable power over how the PLC
program is organized. This is heavily modularized as we shall see later,
and the user can specify different scan rates for different modules of
the program.

Figure 2.11 The ABB Master system: (a) layout of ABB Master system;
(b) program structure; (c) part of database (for digital input card)
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Figure 2.11(c) indicates the database for one input card. There are
two levels of the definition, the top level relating to details of the board
itself such as address and scan rate, and the lower levels relating to
details of each channel on the board such as its name and whether the
signal is to be inverted. The database holds details for all the I/O which
can then be referenced in the program either by its database identification
(e.g. DI3.1) or by its unique name (e.g. HydPump2-StartPB).

2.3.6 Mitsubishi F2

The Mitsubishi F2 range is typical of small PLCs with I/O connection,
power supply and processor all contained in one unit as in Figure 2.12.
The smallest unit, the F2-40M, has 24 inputs and 16 outputs (it is char-
acteristic of process control systems that the ratio of input to outputs is
generally 3:2).

The 24 inputs are designated X400 to X427 in octal notation and the
16 outputs Y430–Y447. The apparently arbitrary numbers are directly
related to the storage locations used to hold the image of the inputs and
outputs. Further addresses are used in larger PLCs in the series.

Figure 2.12 Mitsubishi F2 programmable controller mounted (with
program terminal) in the door of a motor control centre cubicle
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2.3.7 Internal bit storage

As well as inputs and outputs, the PLC will need to hold internal signals
for data such as ‘standby pump running’, ‘system healthy’, ‘lubrication
fault’ and so on. It would be very wasteful to allocate real outputs to
these signals, so the PLCs all provide some form of internal bit storage.
These are known variously as auxiliary relays (Mitsubishi), flags (Siemens),
general workspace (GEM-80) and bit storage (Allen Bradley). The nota-
tion used within the programs varies, of course, from manufacturer to
manufacturer.

Mitsubishi use Mnnn with nnn representing numbers within the
predefined area M100 to M377 octal. Like most small PLCs the mem-
ory layout is fixed and cannot be defined by the user. In the other,
larger, PLCs we discuss, the user can define how many storage bits are
needed.

The Siemens notation is FByte.Bit (e.g. F27.06). The GEM-80 has
a variety of general workspaces. The commonest is called the G table,
and appears in programs as GWord.Bit (e.g. G52.14). The G table is
cleared when the PLC goes from a stopped state to a run state. Storage
in the R table (e.g. R12.03) retains its state with the processor halted or
with power removed.

Bit storage in the PLC-5 is denoted by B3/n where n denotes the sig-
nal (e.g. B3/192). The B denotes bit storage and the 3 is mandatory
and arises out of the way that the PLC-5 holds data in files. Bit storage
is file 3, timers are file 4 (T4) and counters file 5 (C5) as we shall see
later.

The ABB Master programming language does not really require internal
storage bits, the function being provided by elements and connections
within its database and the programming language.

2.4 Programming methods
2.4.1 Introduction

The programming language of a PLC will be used by engineers, techni-
cians and maintenance electricians. It should therefore be based on
techniques used in industry rather than techniques used in computer
programming. In this section we shall look at the various ways in which
PLCs from different manufacturers can be programmed.

It is, perhaps, worth mentioning at this point the rather interesting
approach adopted by Siemens, who provide three different programming
methods for their machines, allowing the user to choose. Even more
remarkable, with a few exceptions a program written in one format can
be viewed in another.
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2.4.2 Ladder diagrams

Early PLCs, designed for the car industry, replaced relay control
schemes. The symbols used in relay drawings, –] [– for a normally
open (NO) contact, –] / [– for a normally closed (NC) contact, and
–( )– for a plant output, were the basis of the language. Figure 1.14
shows the keyboard for a programmer for this type of PLC; the relation-
ship to relay symbolism is obvious.

Suppose we have a hydraulic unit, and we wish to give a Healthy
Lamp indication when

1 The pump is running (sensed by an auxiliary contact on the pump
starter).

2 There is oil in the tank (sensed by a level switch which makes when
the switch is covered).

3 There is oil pressure (sensed by a pressure switch which makes for
adequate pressure).

With conventional relays, we would wire up a circuit as in Figure
2.13(a).

To use a PLC, we connect the input signals to an input card, and the
lamp to an output card, as in Figure 2.13(b). The I/O notation used is
Allen Bradley.

The program to provide the function is shown in Figure 2.13(c). The
line on the left can be considered to be a supply, and the line on the
right a neutral. The output is represented by a coil –( )– and is energized
when there is a route from the left-hand rail. Output 0:22/01 will come
on when signals 1:21/00, 1:21/01 and 1:22/02 are all present.

The program is entered from a terminal with keys representing the
various relay symbols. The terminal can also be used to monitor the
state of the inputs and outputs, with ‘energized’ inputs and outputs
being shown highlighted on the screen.

In Figure 2.14, a hydraulic cylinder can be extended or retracted by
operation of two pushbuttons. The notation this time is for a GEM-80.
It is undesirable to allow both solenoids to be operated together; this
will almost certainly result in blown fuses in the supply to the output
card, so some protection is needed. The program to achieve this is
shown in Figure 2.14(b).

Normally closed contacts –] / [– have been used here. Output B2.9,
the extend solenoid, will be energized when the extend pushbutton is
pressed, providing the retract solenoid is not energized or the retract
button pressed, and the extend limit switch has not been struck.

There are two points to note in Figure 2.14. Contacts can be used off
outputs as well as inputs, and contacts can be used as many times as
needed in the program. Figure 2.14 also shows where the name ‘ladder
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program’ comes from. A program in this form looks like a ladder, with
each instruction statement forming a ‘rung’ and the power rail and neutral
the supports. The term ‘rung’ is invariably applied to the contacts leading
to one output.

Let us return to the hydraulics healthy light of Figure 2.13 and add
a lamp test pushbutton (a useful feature that should be present on all
panels; it not only allows lamps to be tested, but can also be used to
check the PLC itself is running). To do this we add the lamp test push-
button to the PLC and modify the program to Figure 2.15.

Here we have added a branch, and the output will energize if our
three plant signals are all present or the lamp test button is pressed. The
way in which the branch is programmed need not concern us here as it
varies between manufacturers. Some use Start Branch and End Branch
keys (the keypad of Figure 1.14 uses this method; the corresponding
keys can readily be identified). Others use a Branch From/To approach.
All are simple to use.

Figure 2.13 From relay circuit to ladder diagram: (a) simple relay circuit;
(b) PLC wiring; (c) ladder diagram
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A further use of a branch is shown in Figure 2.16. This is probably
the commonest control circuit, a motor starter, shown using Siemens
notation. The operation is simple; pressing the start pushbutton causes
the output Q8.2 to energize, and the contact of the output in the branch
keeps the output energized until the stop button is pressed. The program,
like its relay equivalent, remembers which button was last pressed.

Figure 2.14 Ladder diagram in GEM-80 notation: (a) PLC wiring;
(b) ladder diagram

Figure 2.15 Adding a branch
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There is, however, a very important point to note about the pushbutton
wiring and the program. For safety, a normally closed stop button has
been used giving an input signal on I12.5 when the stop button is not
pressed. A loss of supply to the button, or a cable fault, or dirt under the
contacts, will cause the signal to be lost, making the program think the
stop pushbutton has been pressed, causing the motor to stop. If a normally
open stop pushbutton has been used, the PLC program could easily be
made to work, but a fault with the stop button or its circuit could leave
the motor running, with the only way of stopping it being to turn off the
PLC or the motor supply.

This topic is discussed further in Section 8.2, but note the effect on
the program in Figure 2.15. The sense of the stop button input (I12.5)
inside the program is the opposite of what would be expected in a relay
circuit. The input is really acting as ‘permit to run’ rather than ‘stop’.

2.4.3 Logic symbols

Logic gates based on TTL (transistor–transistor logic) and CMOS (com-
plementary metal oxide semiconductor) integrated circuits are widely

Figure 2.16 A latching motor starter program: (a) PLC wiring; (b) ladder
diagram
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used in digital systems (including the boards used inside PLCs). The
circuits used on these boards are represented by logic symbols, and these
symbols can also be used to describe the operations of a PLC program.
Logic symbols are used by Siemens and ABB; initially we will use Siemens
notation.

The output from an AND gate, shown in Figure 2.17(a), is true
if (and only if ) all its inputs are true. The operation of the gate of
Figure 2.17(a) can be represented by the table of Figure 2.17(b). In
Figure 2.17(c) we have the hydraulics healthy lamp of Figure 2.13

Figure 2.17 PLC programs using logic symbols (based on Siemens
notation): (a) an AND gate; (b) truth table for AND gate; (c) hydraulic
healthy lamp of Figure 2.13 in logic notation; (d) an inverted input;
(e) hydraulic cylinder of Figure 2.14 in logic notation
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redrawn connected to a Siemens PLC. Using logic symbols, we would
program this as shown. The output block, denoted by equals (=), is
energized when its input is true, so the lamp Q8.2 is energized (lit) when
all the inputs to the AND gate are true.

Often a test has to be made to say a signal is not true. This is denoted
by a small circle �. The output of the AND gate in Figure 2.17(d) is
true if (and only if) A and B are true and C is not true.

In Figure 2.14 we illustrated the control of a hydraulic cylinder with
a program which prevented the extend and retract solenoids from being
energized simultaneously. This is redrawn for a Siemens PLC controlled
with the program of Figure 2.17(e). Note the NOT inputs on each
AND gate.

The output of an OR gate, Z in Figure 2.18(a), is true if any of its
inputs are true. The symbol in the gate means ‘the output is true if one
or more inputs are true’. The inverse of a signal can be tested, as before,
with a small circle �. The output Z of the gate in Figure 2.18(b) is true
if A is true or B is false or C is true. In Figure 2.18(c) we have used an
OR gate to add a lamp test to our hydraulics healthy lamp.

The circuit of Figure 2.18(c) is an AND/OR combination. The ABB
Master has logic combination blocks as well as the basic gates. Figure
2.19(a) is the Master block corresponding to Figure 2.18(c) (with a Master
program referring to the names in its database). Similarly, for an OR/
AND combination the OR/AND block of Figure 2.19(b) can be used in
a Master program.

Figure 2.18 The OR gate: (a) OR gate; (b) OR gate with inverted input;
(c) lamp test added to Figure 2.17(c)
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2.4.4 Statement list

A statement list is a set of instructions which superficially resemble
assembly language instructions for a computer. Statement lists, available
on the Siemens and Mitsubishi range, are the most flexible form of
programming for the experienced user but are by no means as easy to
follow as ladder diagrams or logic symbols.

Figure 2.20 shows a simple operation in both ladder and logic formats
for a Siemens PLC. The equivalent statement list would be as shown in
Table 2.1. Here A denotes AND, AN denotes AND/NOT and = sends
the result to the output address Q4.11.

Figure 2.19 ABB Master composite gates: (a) AND/OR gate
(equivalent to Figure 2.18(c)); (b) OR/AND gate

Figure 2.20 Equivalent ladder and logic statements in Siemens notation
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An OR operation is shown in Figure 2.21. The equivalent statement
list is shown in Table 2.2. Here ON denotes OR/NOT and O denotes
OR.

Where a set of statements can be anomalous, brackets can be used to
define the operation precisely. This is similar to the use of brackets in
conventional programming where the sequence 3 + 5/2 can be written as
(3 + 5)/2 = 4 or 3 + (5/2) = 5.5. Although the latter is the default assumed
by a program, the brackets do make the operation clear to the reader.

Table 2.1

Instruction
number

Operation Address

00 :A l3.7 Forward pushbutton
01 :A l3.2 Front limit OK
02 :AN Q4.2 Reverse solenoid
03 : = Q4.11 Forward solenoid

12.7 Q4.4

F3.6

Q4.2

Q4.4
12.7

F3.6

Q4.2

≥

Figure 2.21 OR gate equivalence in Siemens notation

Table 2.2

Here ON denotes OR/NOT and O denotes OR.

Instruction
number

Operation Address

00 :ON I2.7 Local pump running auxiliary
01 :O F3.6 Remote pump running flag
02 :ON Q4.2 Local pump starter
03 : = Q4.4 Pump healthy lamp
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Figure 2.22 shows a typical operation, as usual in both logic and
ladder diagram format. The equivalent statement list is shown in Table
2.3. Computer programmers will recognize this as being similar to the
operation of a stack, a topic discussed further when we consider
FORTH in Section 7.3.

The Mitsubishi PLC also uses statement lists, although the manual
recommends the designer to construct a ladder diagram first and then
translate it into a statement list. The PLC system shown in Figure 2.23
with Mitsubishi notation becomes the statement list in Table 2.4.

Figure 2.22 More complex program in both notations

Figure 2.23 Mitsubishi ladder program
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2.5 Bit storage
Some form of memory circuit is needed in practically every PLC pro-
gram. Typical examples are catching a fleeting alarm and the motor
starter of Figure 2.16, where the rung remembers which button (start or
stop) has been last pressed. These are known, for obvious reasons, as
storage circuits.

The commonest form is shown in ladder and logic form in Figure
2.24(a). Here output C is energized when input A is energized, and stays
energized until input B is de-energized. The sense of input B is chosen
for safety reasons; it acts as a ‘permit to energize’ signal as discussed
in Sections 2.4.2 and 8.2.

Table 2.3

Instruction
number

Operation Address

00 :A( First set of brackets
01 :A F3.3 Manual forward
02 :O F3.4 Automatic forward
03 :) Result of first set of

brackets
04 :A( AND result with second

set of brackets
05 :A I2.0 Motor 1 selected
06 :O I2.1 Motor 2 selected
07 :) Now at point X
08 :A I4.1 Front limit switch healthy
09 :AN Q5.5 Reverse starter
10 : = Q5.6 Forward starter

Table 2.4

Line Instruction Comment

0 LD X401 LD starts rung or branch
1 AND X402 Xnnn are inputs
2 ANI X403 ANI is And/Not
3 LD Y430 LD starts a new branch leg
4 AN M100 Mnnn are internal storage
5 ORB OR the two branch legs
6 AND M101
7 OUT Y430 End of rung
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Figure 2.24 Bit storage circuits: (a) commonest storage circuit, stop B
overrides start A; (b) operation of program (a); (c) storage circuit where
start A overrides stop B; (d) operation of program (c)
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The operation is summarized on Figure 2.24(b). As can be seen, input
B overrides input A, the action required of a start/stop circuit. In some
circuits, however, the start is required to override the stop. A typical
example can be found in cars; the windscreen wipers run when they are
switched on, but continue to run to the park position when they are
turned off. The PLC equivalent is Figure 2.24(c), where A would be the
run switch, B the park limit switch and C the wiper motor. B has again
been shown energized to allow running. The operation is summarized
in Figure 2.24(d).

In logic design, storage is provided by a device called a flip-flop
shown in Figure 2.25(a). This has two inputs, S (for set) and R (for reset).
The device remembers which input was last a 1. If both inputs occur
together, the top (S) input wins. Such a circuit is called an SR flip-flop. If
the device is drawn with the R input at the top, as in Figure 2.25(b), the
R input will override the S input if both are present together.

The flip-flop is used in logic symbol PLC programming. A motor
starter using a Siemens PLC is shown in Figure 2.26(a). Note that the
RS version has been used to ensure that the stop logic overrides the run
logic, and the stop signal acts as a permit to run.

Clarity is of prime importance in writing PLC programs, to help
a tired engineer fault finding in the middle of the night see how a pro-
gram works. The memory feature of the circuit of Figure 2.24 is not
immediately clear. It helps if the latch contact is always the lowest in the
branch (for ladder circuits) or the gate (for logic circuits).

The flip-flop symbol is often found in ladder diagrams. Figure 2.26(b)
is the direct Siemens ladder equivalent of Figure 2.26(a).

Figure 2.25 The two types of flip-flop storage. (a) The S–R flip-flop. Set
overrides reset. (b) The R–S flip-flop. Reset overrides set
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In these circuits, the preferred form of normally closed stop button
has been used. Note how these appear in the program, and compare
them with the earlier ladder program of Figure 2.24.

The ABB Master uses an almost identical symbol for the flip-flop,
except that there are five versions. The first of these is the simple SR
type shown in Figure 2.25. The other versions are based on the fact
that flip-flops are invariably preceded by AND/OR combinations
(Figure 2.26 is typical). The additional flip-flops are one-unit blocks
consisting of a flip-flop with built-in AND/OR gates of user-defined
size. Figure 2.26(c), for example, is an ABB SRAO with an AND gate on
the set input and an OR gate on the reset inputs. Other units are SRAA
(AND/AND), SROA and SROO.

Figure 2.26 Flip-flop storage: (a) logic notation; (b) ladder notation;
(c) ABB SRAO flip-flop
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In Allen Bradley ladder diagrams, program clarity can be improved
by the use of latch and unlatch outputs shown in Figure 2.27(a). These
work on the same bit, setting the bit when a 1 is presented to the –(L)–
and resetting the bit when a 1 reaches the –(U)–. When both receive
a 0, the bit holds its last state. The Mitsubishi F2 uses a similar idea, but
calls them S and R outputs as in Figure 2.27(b). This would be coded
into the statement list in Table 2.5.

With both the Allen Bradley latch/unlatch, and the Mitsubishi set/reset,
the priority goes to whichever is last in the program because of the
program scan. Both the examples of Figure 2.27 correctly give priority
to the stop signals.

Figure 2.27 Other forms of storage: (a) Allen Bradley latch/unlatch;
(b) Mitsubishi set/reset

Table 2.5

Line Instruction Comment

0 LD X400
1 OR X401
2 S Y432 Set output
3 LDI X402
4 ORI X403
5 R Y432 Reset output
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Power failure or halting of the PLC causes a problem with memories.
When the PLC restarts should a memory bit hold the state it was in
before the PLC halted, or should the memory be cleared? This is
always a question of safety and convenience. A water pump in a pump
house by a river 5 km from the main site should probably be allowed
to restart itself if it was running before the power fail; an automatic
stamping machine should almost certainly not restart itself.

The PLC manufacturers therefore allow the designer to choose whether
a storage bit holds its state after a power fail (called retentive memory) or is
cleared when the PLC is first run (called non-retentive memory).

In the Allen Bradley PLC-5, this is determined by the circuit; the
simple coil of Figure 2.24 is non-retentive, the latch/unlatch of
Figure 2.27 is retentive.

Other PLCs use the bit address. On a Siemens 115, flag addresses
F0.0–F127.7 can be made retentive. On the Mitsubishi PLC, auxiliary
relays M100–277 are non-retentive, and M300–M377 are retentive. In
the GEM-80, the general bit storage G table is non-retentive, while a
similar R table is retentive, so a circuit similar to that of Figure 2.24
constructed with R3.4 as the coil and retaining contact would hold its
state after a power failure.

The ABB Master uses a very structured PLC language, and forces a
disciplined style on the programmer. The nature of sub-elements such
as memories and their behaviour when the PLC is first run is defined
when the program elements are first declared.

Retentive storage can be very hazardous, as plants can unexpectedly
leap into life after a power fail. The designer should take care that the
design does not accidentally introduce retentive features by an inadvertent
selection of bit addresses. The use of the R table in the GEM-80 is particu-
larly praiseworthy, as an R table address is unlikely to be chosen in error.

2.6 Timers
Time is nearly always a part of a control system. Typical examples are:
‘Lift parking brake, wait 0.5 seconds for brake to lift, drive to forward
limit and stop drive, wait 1 second and apply parking brake’, and ‘Start
hydraulic pump, if auxiliary contact not in within 0.7 seconds signal
drive fault, if drive runs wait 2 seconds and energize loading valve, if
hydraulic pressure not established within 3 seconds signal hydraulic
fault and stop pump’. A PLC system must therefore include timers as
part of its programming language. There are many types of timer, some
of which are shown in Figure 2.28.

By far the commonest is the on delay of Figure 2.28(a). All the other
timer blocks can be simulated with this block and a bit of thought.
A 0 to 1 transition is delayed for a preset time T, but a 1 to 0 transition
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is not delayed at all. An input signal shorter than T is ignored. The
GEM-80 has only this type of timer, calling it a delay.

The off delay of Figure 2.28(b) passes a 0 to 1 transition instantly but
delays the 1 to 0 transition. A common use of the off delay is to remove
contact bounce or noise from an input signal. An off delay can be
obtained from an on delay by using the inverse of the input signal and
taking the inverse of the timer output signal (although the resulting
program lacks some clarity).

Figure 2.28(c) is an edge-triggered pulse timer; this gives a fixed-
width pulse for every 0 to 1 transition at the timer input. The PLC-5 has
a one-scan pulse timer which produces a pulse lasting one (and only
one) program scan. Pulses are useful for resetting counters or gating
some information from one location to another. The annunciator
(described in Section 6.4) is a typical example.

Figure 2.28 Different forms of timer: (a) on delay; (b) off delay; (c) fixed
width pulse
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A timer of whatever type has some values that need to be set by the
user. The first of these is the basic unit of time (i.e. what units the time is
measured in). Common units are 10 ms, 100ms, 1 s, 10 s and 100 s. The
base unit does not affect the accuracy of the timer; normally the accu-
racy is similar to the program scan.

Next the timer duration (often called the preset) is defined. This is
normally set in terms of the time base; a timer with a preset of 150 and a
time base of 10ms will last 1.5 s, for example. In small PLCs this preset
is set by the programmer; in the larger PLCs the duration can be
changed from within the program itself. A delay off timer used to apply
a parking brake, for example, could have different preset times depending
on whether the drive concerned is travelling at low speed or high speed.

When a timer is used there are several signals that may be available.
Figure 2.29 shows the signals given for a PLC-5 delay on timer (called
a TON) and a delay off timer (called a TOF).

• EN (for enable) is a mimic of the timer input
• TT (for timer timing) is energized whilst the time is running
• DN (for done) says the timer has finished

In larger PLCs the elapsed time (often called the accumulated time) may
be accessed by the program for use elsewhere (a program may be
required to record how long a certain operation takes).

PLC manufacturers differ on how a timer is programmed. Some, such
as the GEM-80, treat the timer as a delay block similar to Figure 2.28(a),
with the preset being stored in a VALUE block. Siemens use a similar
idea, but have different types of timer. The PLC-5, however, uses the
timer as a terminator for a rung, with the timer signals being available as
contacts for use elsewhere.

Figure 2.29 Allen Bradley timer notations: (a) TON timer; (b) TOF timer
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Figure 2.30 Various timer types in the same application: (a) PLC-5
notation; (b) GEM-80 notation; (c) Siemens logic notation
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Figure 2.30 is a typical application programmed for a GEM-80, a
Siemens 115U in logic symbols and a PLC-5. The program controls a
motor starter which is started and stopped via pushbuttons. The motor
starter has an auxiliary contact which makes when the starter is ener-
gized, effectively saying the motor is running. If the drive trips because
of an overload, or because an emergency stop is pressed, or there is a
supply fault, the auxiliary contact signal will be lost. The contact cannot,
however, be checked until 1.5 s after the starter has been energized to
allow time for the contact to pull in. Figure 2.30 checks the auxiliary
contact and signals a drive fault if there is a problem. Note the differ-
ence in the ways the timer is used and the fault signal is stored.

The accumulated time in the timers discussed so far goes back to zero
each time the input goes to a zero as summarized in Figure 2.31(a). This
is known as a non-retentive timer. Most PLC timers are of this form.
Occasionally it is useful to have a timer which holds its current value
even though the input signal has gone. When the input occurs again the
timer continues from where it stopped as in Figure 2.31(b). This, not
surprisingly, is known as a retentive timer. A separate signal must be
used to reset the timer to zero. If a retentive timer is not available on
a particular PLC, the same function can be provided with a counter,
a topic discussed in the next section.

A typical timer can count up to 32 767 base time units (corresponding
to 16 binary bits). Some older PLCs working in BCD can only count to
999. With a 1-s time base the maximum time will be just over 546 min
or about 9 h. Where longer times are needed (or times with a resolution
better than 1 s) timers and counters can be used together as described in
the next section.

2.7 Counters
Counting is a fundamental part of many PLC programs. The PLC may
be required to count the number of items in a batch, or record the
number of times some event occurs. With large motors, for example,
the number of starts has to be logged. Not surprisingly, all PLCs include
some form of counting element.

A counter can be represented by Figure 2.32, although not all PLCs
will have the facilities we will describe. There will be two numbers asso-
ciated with the counter. The first is the count itself (often called the
accumulated value) which will be incremented when a 0→ 1 transition
is applied to the count up input, or decremented when a 0 → 1 transition
is applied to the count down input. The accumulated value (count) can
be reset to zero by applying a 1 to the reset input. Like the elapsed time
in a timer, the value of the count can be read and used by other parts of
the program.
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The second number is the preset, which can be considered as the tar-
get for the counter. If the count value reaches the preset value, a count
complete or count done signal is given. The preset can be changed by
the program; a batching sequence, for example, may require the operator
to change the number of items in a batch by a keypad or VDU entry.
Similarly, a signal ‘zero count’ is sometimes available, giving an operation
which is summarized in Figure 2.32(b).

PLC manufacturers handle counters, like timers in slightly different
ways. The PLC-5 and the Mitsubishi use count up (CTU), count down
(CTD) and reset (RES) as rung terminators with the count done signal
(e.g. C5:4.DN) available for use as a contact.

Figure 2.31 Retentive timers: (a) non-retentive timer; (b) retentive
timer; (c) Allen Bradley notation; (d) Siemens notation
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The Siemens S5, ABB Master and GEM-80 treat a counter as an
intermediate block in a logic diagram or rung from which the required
output signals can be used.

Figure 2.33 shows a simple count application performed by a PLC-5,
a Siemens S5 and a GEM-80. Items passing along a conveyor are
detected by a photocell and counted. When a batch is complete, the
conveyor is stopped and a batch complete light is lit for the operator to
remove the batch. When he does this, a restart button sets the sequence
running again.

Although smaller, the GEM and Siemens programs both suffer from
a small problem that is not at first apparent. If a lamp test PB is added,
when pressed it will cause the conveyor to stop. In both cases this could
be overcome by using an internal store saying ‘count complete’. A –] / [–
contact would then be used for the conveyor, and a –] [– contact for the
lamp. This would add one rung to each program. Considerations such
as this are known as ‘software engineering’, a topic we will discuss
further in the next chapter.

Figure 2.32 The up/down counter: (a) counter diagram; (b) counter
operation
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Figure 2.33 Counter application in Allen Bradley, GEM and Siemens
notations: (a) Allen Bradley; (b) GEM-80; (c) Siemens
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Like timers, most PLCs allow a counter to count up to 32 767. Where
larger counts are needed, counters can be cascaded with the complete (or
done) signal from the first counter being used to step the second counter
and reset the first. Suppose counter 1 holds the range 0–999, and coun-
ter 2 the thousands. If counter 2 holds 23 516 and counter 1 holds 457,
the total count is 23516 457.

Figure 2.34 is a variation on the same idea used to give a very long
timer. It is shown for a PLC-5, but the same idea could be used on
any PLC.

Figure 2.34 Cascaded counters
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The first rung generates a free-running one-scan pulse with inter
pulse period set by the timer. (When the timer has not timed out, the
DN signal is not present and the timer is running. When it reaches the
preset, the DN signal occurs, resetting and restarting the timer.)

The resulting 1-s pulse is counted by successive counters to give accu-
mulated seconds/minutes/hours/days/years. As each counter reaches its
preset it steps the next counter and resets itself. This technique is widely
used to log hours run for pumps, fans and similar devices for maintenance
scheduling. In this case the ‘event’ in the second rung will be an auxiliary
contact on the motor starter.

Long-duration timers built from counters are normally retentive (i.e.
they hold their value when the controlling event is not present). They
can be made non-retentive by resetting the counters when the controlling
event is not present, but this is rarely required.

2.8 Numerical applications
2.8.1 Numeric representations

So far we have been primarily discussing single-bit operations. Numbers
are also often part of a control scheme; a PLC might need to calculate
a production rate in units per hour averaged over a day, or give the
amount of liquid in a storage tank. Such operations require the ability to
handle numeric data.

Most PLCs work with a 16-bit word, allowing a positive number in
the range 0 to + 65535 to be represented, or a signed (positive or nega-
tive) number in the range − 32 768 to + 32 767 in two’s complement (see
Appendix). In the latter case the most significant bit represents the sign,
being 1 for negative numbers and 0 for positive numbers. Two’s
complement representation is usually (but not exclusively) used in PLC
programs.

Numbers such as these are known as integers, and obviously can
only represent whole numbers in the above range. Where larger whole
numbers are required, two 16-bit words can be used, allowing a range of
−2147483 648 to +2 147 483 647. This type of integer is available in
the ABB Master (where it is known as a ‘long integer’) and the 135U
and 155U in the Siemens family (where the term ‘double word integer’
is used).

Where decimal fractions are needed (to deal with a temperature of
45.6 °C for example) a number form similar to that found on a calculator
may be used. These are known as real or floating point numbers, and
generally consist of two 16-bit words which contain the mantissa (the
numerical portion) and the exponent. In base ten, for example, the
number 74057 would have a mantissa of 7.4057 and an exponent of 4,
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representing 104. PLCs, of course, work in binary and represent mantissa
and exponent in two’s complement form. There are inevitably variations
between manufacturers, but an emerging standard is the IEEE single
precision 32-bit format shown in Figure 2.35(c). This gives a range of
±(1.175E − 38 to 3.402E38). Some manufacturers trade off the range of
the exponent to give greater precision in the mantissa. In the ABB
Master, for example, the range is ±(5.4E − 20 to 9.2E18), which allows
extra precision.

Real numbers are very useful but their limitations should be clearly
understood. There are two common problems. The first occurs when
large numbers and small numbers are used together. Suppose we have
a system operating to base ten with four significant figures, and we wish
to add 857800 (stored as 8.578E5) and 96 (stored as 9.600E1). Because
the smaller number is outside the range (four significant figures) of the
larger, it will be ignored, giving the result 857 800 + 96 = 857 800.

The second problem occurs when tests for equality are made on real
numbers. The conversion of decimal numbers to binary numbers can
only be made to the resolution of the floating point format (1.175E − 38

Figure 2.35 Numerical representations: (a) standard 16-bit integer;
(b) long 32-bit integer; (c) IEEE 32-bit real
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for IEEE single precision). Most home computers hold numbers in float-
ing point form, and the effect can be demonstrated with the simple
BASIC program:

100 A = 3
110 B = 6.4
120 C = 9.4
130 IF(A + B) = C THEN PRINT (“3 + 6.4 = 9.4”): GOTO 150
140 PRINT (“3 + 6.4 does not = 9.4, it = ”);: PRINT C
150 PRINT (“Take care with real numbers!”)

This simple program does not do what you might expect! If real num-
bers must be used for comparison, a simple equates (=) is very risky.
The composites >= (greater than or equals to) and <= (less than or equal
to), are safer, but it is generally better practice to use integers for tests if
at all possible.

The final representation, BCD for binary coded decimal, is used for
connection to outside world devices such as digital displays or thumb-
wheel switches. Such devices are arranged in a decimal format, with 4
binary bits per decade. This representation is wasteful, as six ‘numbers’
are not used per 4 bits (10 to 15 inclusive). It is, however, a convenient
form to use with external wiring. Most PLCs therefore have instruc-
tions which convert BCD to the internal binary format of the PLC, and
binary back to BCD. The PLC-5, for example, has FRD (from decimal)
and TOD (to decimal). Figure 2.36 shows a schematic of a typical
operation. Sections 9.11 and 9.12 describe how to perform Binary/BCD
conversion for machines without these functions.

FRD

Input card

1 1 10 0 0
49 in binary to
rest of program

4 9

01001001

TOD

output card

1 1 10
27 in binary from
rest of program

00100111

Decade switches Digital displays

1

Figure 2.36 Application of binary coded decimal (BCD)
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The types of numbers available in each PLC range vary considerably
according to the model (and obviously the price). The Mitsubishi F2, for
example, only allows movement, comparison and output of numerical
data from counters or timers, making it essentially a bit-operation machine.

In the Siemens range, the popular 115-U uses only 16-bit integer num-
bers but the next model in the range, the 135-U, can handle 16-bit and
32-bit integers and floating point numbers. A similar spread of capabil-
ities will be found amongst the Allen Bradley, GEM-80 and ABB families.

2.8.2 Data movement

Numbers are often required to be moved from one location to another;
a timer preset may be required to be changed according to plant
conditions, a counter value may need to be sent to an output card for
indication on a digital display or the result of some calculations may be
used in another part of a program.

The Allen Bradley PLC-5 uses one rung per move operation, and is
possibly the simplest to explain first. Its simplicity of one rung per
operation is continued in all the arithmetic functions we shall consider,
but it can lead to more rungs being used for a given operation than in
other machines.

Figure 2.37(a) shows the form of the rung. It starts with some binary
conditions; if these are all made the output MOV (for move) is obeyed,
transferring data from the source to the destination. The source and
destination can be any location where numerical data can occur, for
example:

Counter or timer preset e.g. C5:17.PRE or
T4:52.PRE

Counter or timer accumulated value e.g. C5:22.ACC or
T4:6.ACC

Input or output WORD data e.g. I:23 (card 3 in
rack 2, all 16 bits)
0:47 (card 7 in rack 4,
all 16 bits)

Note that these data are interpreted as binary; if BCD data are needed,
the FRD and TOD instructions are available (see Figure 2.36).

Internal integer storage e.g. N7:24
Internal floating point storage e.g. F8:32

If data are transferred between integer and floating point forms, the con-
version is performed automatically. However, care must be taken when
transferring floating point numbers to integers as an error can occur if
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the floating point number is outside the integer range. Finally, as a
source only, a constant (such as 3, 17 or 4057) can be used.

The example of Figure 2.37 thus moves the number held in N7:34 to
the preset of timer T4:6 when the rung conditions are met.

Siemens and GEC use a slightly different approach which leads to
more compact programs and a small improvement in rounding errors at
the expense of a less direct way of working. Both treat a data movement
as two separate instructions via a separate accumulator (a single word
storage location). Siemens use the instructions Load to move data from
a source to the accumulator, and Transfer to move data from the accu-
mulator to the destination, as in Figure 2.37(b). The data can come from
(or go to) any data storage area, some of which are

IW a 16-bit input word
QW a 16-bit output word
T a timer word
C a counter word
DW a 16-bit data storage word

Figure 2.37 would thus be programmed as

:L T113 (timer value to accumulator)
:T DW45 (accumulator to data word 45)

Figure 2.37 Data movement: (a) Allen Bradley; (b) Siemens; (c) GEM-80
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The use of the accumulator is not obvious in the GEM-80. The – <AND> –
instruction puts the binary number from the specified location (again
internal storage or I/O) into the rung, and the – <OUT > – instruction
puts the value from the rung to the specified address. In Figure 2.37(c)
the (binary) value from 16-bit input word A12 is placed into 16-bit stor-
age word G24. BCD/binary conversion is available with – <BCDIN > –
and – <BCDOUT> – instructions, the direction of the conversion being
obvious.

The difference between Figure 2.37(b) and (c) and Figure 2.37(a) will
become apparent when we discuss arithmetic operations in Section 2.8.4.

In the ABB Master, the points between which data are to be trans-
ferred are simply linked on the logic diagram.

2.8.3 Data comparison

Numerical values often need to be compared in PLC programs; typical
examples are a batch counter saying the required number of items have
been delivered, or alarm circuits indicating, say, a temperature has gone
above some safety level.

These comparisons are performed by elements which have the gener-
alized form of Figure 2.38, with two numerical inputs corresponding to
the values to be compared, and a binary (on/off) output which is true if
the specified condition is met.

Many comparisons are possible; most PLCs provide

A greater than B
A greater than or equal to B
A equal to B
A less than or equal to B
A less than B

where A and B are numerical data. With real (floating point) numbers
the ‘equal to’ test should be avoided for the reasons given in the previous
section. There are many other possible comparisons; a PLC-5, for example,
has a Limit instruction which tests for A lying between B and C and the
GEM and Siemens have a ‘not equal’ test.

Figure 2.38 Basics of data comparison
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Figure 2.39 shows the setting and resetting of an alarm flag B3/21 (for
a PLC-5 ladder diagram) and F21/02 (for Siemens logic symbols). The
alarm bit is set if temperature (read from an analog input card in format
nn.n °C and held in N7:15 in the PLC-5 or DW42 in the Siemens 115-U)
goes above 50.0 °C. Once set, the alarm is stored until the temperature
goes below 40.0 °C.

2.8.4 Arithmetical operations

Numerical data implies the ability to do arithmetical operations, and all
PLCs we are considering (apart from the simple F2) provide the ability
to do at least four function mathematical operations (add, subtract,
multiply and divide).

In Section 2.8.1 we discussed integer and floating point numbers.
Care needs to be taken with integer operations. The range of a 16-bit
two’s complement number is − 32 768 to + 32 767 (see Appendix). If an
arithmetical operation goes outside this range, the number will overspill,
for example:

Figure 2.39 Use of data comparison: (a) Allen Bradley; (b) Siemens
(logic notation)

075065757X-ch002.fm Page 78 Friday, July 25, 2003 2:49 PM



Programming techniques 79

in 16-bit two’s complement

which is not quite the expected result. The PLCs have an overspill
flag which can be examined and used to flag an alarm, or set the
result to, say, zero with a Move instruction. Similar precautions need
to be taken with subtraction and multiplication (the latter being
particularly vulnerable to giving an overspill; 200×200=40000, well
over range).

It should be borne in mind that an arithmetical overspill could arise
from a fault on an analog input card, a plant sensor or even the plant
itself, and the fault could be otherwise undetected. There is a true story
of a false missile attack warning which occurred in the USA in the 1960s
when a radar system received echoes from the moon. The target dis-
tance (calculated by dividing the echo delay by the speed of light)
grossly overspilled, but no check was made and the result was an appar-
ently legitimate distance with echoes corresponding to incoming
missiles. This caused the USA defences to go to a first state of alert.
Fortunately human beings intervened after a few minutes.

Even greater care needs to be taken with division. A programming
error or a fault condition on external plant or a PLC input card can lead
to a divide by zero error. This will stop many PLCs dead in their tracks
with a ‘program fault’. It is therefore good practice to precede any vul-
nerable divide instruction with a limit check to ensure it will only be
obeyed when a sensible result is obtained.

Figure 2.40 illustrates a typical example that caught me out. It was
required to measure the speed of an object, and this was achieved by
timing the nose between two photocells, the velocity then being ν =d/T.
All worked well until PEC2 failed some months later, returning a time

26732
8647

30157–
---------------------------

Figure 2.40 An example of a divide by zero error
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of zero and producing a divide by zero PLC fault in the early hours of
the morning. The maintenance staff changed several items (including
the PLC itself as a PLC fault light was on) before the fault was found.
The author was duly shamefaced.

Each PLC manufacturer handles arithmetic in a slightly different way
with varying degrees of ease and readability. None are as simple as a
high level language such as BASIC or Pascal, and the facilities are gener-
ally limited to four function maths plus square root in all bar the most
expensive machines.

A PLC-5 uses maths blocks such as ADD, SUB, MULT and DIV,
giving a simple, if somewhat lengthy, program. Figure 2.41 shows how
a simple calculation could be performed for a self-correcting length-cutting
program. More powerful PLC-5s (such as the 5/40) have a block compute
instruction which allows a mathematical expression to be evaluated in
a single instruction.

The 115-U evaluates arithmetic instruction in STL (statement list)
format. It will be remembered from our discussion of the accumulator
that the load (L) and transfer (T) instructions use an internal accumula-
tor. There are, in fact, two accumulators, and a load instruction moves
the contents of accumulator 1 to accumulator 2 and then moves the
contents of the source to accumulator 1, as shown in Figure 2.42. An
arithmetic instruction (add, subtract, etc.) works on the contents of both
accumulators. Figure 2.42 thus adds two numbers and transfers the
result to storage.

The Siemens equivalent of Figure 2.41 would be

Figure 2.41 Arithmetic in the PLC-5
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L DW30 (required length)
L DW31 (measured length)

SUB (leaving error in Acc 1)
L DW32 (gain)

MULT (leaving correction)
L DW40 (the old cut length)

ADD (add change to give new length)
T DW40 (put back to store)

The most understandable forms of representation are possibly the
GEM-80 ladder and the ABB Master formats shown in Figures 2.43(a)
and 2.43(b) respectively. These require little, if any, elaboration.
People familiar with FORTH (discussed in Section 7.3) will realize that
Figures 2.42 and 2.43 are both based on the idea of a pushdown stack.

All maths operations, particularly those involving floating point num-
bers, are time consuming, and it is good programming practice to only
obey instructions when they are needed, and not waste time repetitively
obeying them on every PLC scan.

2.9 Combinational and event-driven logic
2.9.1 Combinational logic

Any control system based on digital signals can be represented by
Figure 2.44(a), with a set of outputs Z, Y, X, W, etc. whose state is
determined by inputs A, B, C, D, etc. The control scheme can operate
in a combination of two basic ways.

Figure 2.42 Arithmetic in a Siemens S5 PLC
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Figure 2.43 Mathematical functions in GEM-80 and ABB Master.
(a) GEM-80 Arithmetic LINCON is an arithmetic function used to avoid
truncation errors with integer mathematics. (b) ABB Master. Variables
are accessed by database names

Figure 2.44 Combinational logic: (a) top level view; (b) broken into
smaller blocks
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The simplest of these is combinational logic, where the scheme can be
broken down into smaller blocks as in Figure 2.44(b) with one output
per block, each output state being determined solely by the correspond-
ing input states. The loading valve for a hydraulic pump, for example, is
to be energized when

The pump is running AND
(Raise is selected AND top limit SW is not struck) OR
(Lower is selected AND bottom limit SW is not struck)

The operation of this loading valve can be implemented with the simple
ladder and logic program of Figure 2.45, but it is worth developing a
standard way of producing a combinational logic program.

The first stage is to break the control system down into a series of
small blocks, each with one output and several inputs. For each output
we now draw up a so-called truth table, in which we record all the
possible input states and the required output state. In Figure 2.46(a) we
have an output Z controlled by four inputs ABCD. There are 16 possible

Figure 2.45 Combinational logic in ladder diagram and logic notation
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input states, and Z is energized for four of these. This can be translated
directly into the ladder diagram of Figure 2.46(b) or the logic circuit of
Figure 2.44(c), with each rung branch or AND gate corresponding to
one row in the truth table. The use of a truth table method for the

Figure 2.46 Combinational logic from a truth table: (a) truth table;
(b) ladder implementation of truth table; (c) logic implementation
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design of combinational logic circuits leads directly to an AND/OR
arrangement called, technically, a sum of products (S of P) circuit.

An inevitable question is ‘Is this the simplest arrangement?’ The
answer is ‘probably not’, and techniques such as Karnaugh maps and
Boolean algebra exist to give a simpler solution. When a circuit is built
from logic gates or relays it can be very important to design circuits
with the minimum number of gates or contacts to reduce construc-
tion costs. With a PLC program, however, the cost of additional con-
tacts is zero, so clarity of operation rather than simplicity should be the
aim. The one simplification that should always be made (again for
clarity) is to pull a common contact out of the branches as shown in
Figure 2.47.

Consider, for example, the motor starter desk layout of Figure 2.48(a).
For cheapness, the three-position switch has been wired with just two
contact blocks as in Figure 2.48(b) (bad practice, as a supply fault will
cause both pumps to run). The truth table gives the ladder diagram of
Figure 2.48(c), but the minimal ladder is Figure 2.48(d). The simplest
ladder, however, masks the operation of the switch and would make
fault finding just a little bit more difficult.

Figure 2.47 Clarifying combinational logic
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2.9.2 Event-driven logic

The states of outputs in combinational logic are determined solely by
the input signals. In event-driven logic (also known as a sequencer) the
state of an output depends not only on the state of the inputs, but also
on what was occurring previously. It is not therefore possible to draw
a truth table from which the required logic can be deduced.

Consider, for example, the simple motor starter circuit of Figure 2.49(a).
With neither button pressed, the motor could be running or stopped
depending on what occurred last. The operation can be described by
Figure 2.49(b), which is known as a state transition diagram (often
shortened to state diagram).

Figure 2.48 Minimization does not aid clarity: (a) desk controls; (b) desk
wiring; (c) truth-table-derived program; (d) minimal program
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The square boxes are the states the system can be in (the motor can
be running or stopped) and the arrows are the transitions that cause the
system to change states. If the motor is running, pressing the stop button
will cause the motor to stop. A bar above a signal (e.g. StopPBOK)
means signal not present; note the wiring of the stop PB and the signal
sense. It is a useful convention to label states with numbers and transitions
with letters.

State transition diagrams can be constructed from storage elements,
with one less storage element than there are states, the one default state
being inferred from the absence of others. It therefore requires just one
storage element (e.g. latch or SR flip-flop) to implement the motor
starter of Figure 2.49.

Figure 2.50 is a more complex example (based on a real lime silo).
A preset weight of lime is fed into a weigh hopper ready for the next
discharge, which is initiated (not surprisingly) by a discharge pushbut-
ton. A hood then lowers (to reduce dust emissions) and the lime
discharges. After the discharge, the hood retracts and the weigh hopper
refills. An abort pushbutton stops a discharge, and a feed permit switch
stops the feed.

There are two fault conditions; failure to get the batch weight in a given
time (probably caused by material jamming in the feeder) and failure to
get zero weight from the discharge (again in a given time and again
probably caused by a material jam). Both of these trip the system from
automatic to manual operation to allow the cause of the fault to be
determined.

Figure 2.49 A state transition diagram: (a) motor starter; (b) state
transition diagram; (c) output table
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We can now draw the state diagram of Figure 2.50(b). It is good practice,
but not essential, to label the common, normal route with successive
numbers (for states) and letters (for transitions). The default state is the
state that the system will enter from manual, and care needs to be taken

Figure 2.50 State transition diagram for a real plant: (a) plant layout;
(b) state transition diagram; (c) output table
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in its selection. Here feed is the sensible choice; if the hopper is already
full the system will immediately pass to state 1 (Ready); if not, the hopper
will be filled. The choice of any other state as default could lead to a
wasted cycle through all the states with no material in the weigh hopper.

The definition of the transitions needs care because parallel routes are
normally not allowed. If transition A was defined as ‘Feed Complete’
and transition G as ‘Time Out OR Not Feed Permit’, the system would
work correctly, but inevitably two signals will one day occur together
causing anomalous operation of the plant and great embarrassment for
the programmer.

The correct definition of transition A is

Feed Complete AND Not Time Out AND Feed Permit

and for transition G

Time Out OR Not Feed Permit

This gives the fault transition priority over the normal transition. Similar
considerations apply to transitions F, D and H.

We can now construct a table linking the outputs to the states. This is
straightforward and is given in Figure 2.50(c).

The next stage is to translate this state diagram into a PLC program.
The steps so far are common to all methods of PLC programming. We
will produce the complete program in ladder format but each operation
could be produced in equivalent logic format.

The program relies very much on the idea of the program scan,
described in Section 2.2. By breaking down the program for our state
diagram into four areas as in Figure 2.51 we can control the order in
which each stage operates. The actual layout of Figure 2.51 is not critical,
but it is essential for transition and states to be kept separate and not
mixed. A formal layout of a state-diagram-based program is one of the
fundamentals of EDDI, described in Section 8.5.7.

Automatic/manual selection comes first; this is achieved with the
simple rung of Figure 2.52. Automatic mode is only allowed if there are
no faults and the hood is raised.

Next come the transitions, the first three of which are shown in
Figure 2.53. These are straightforward and need little comment. Note
that the first contact in each rung is a state, so inputs are only examined
at the correct point in a sequence.

The states themselves are given in Figure 2.54. With the exception of
state 0, simple latches have been used throughout for the states and for the
auto/manual selection so that after a power failure the system will resume
in manual mode. Note that these are set and reset by the transitions.

Finally we have the outputs as in Figure 2.55. An output is energized
during the corresponding state(s) in automatic or from a manual main-
tenance pushbutton in manual.
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We have described the basic ideas of transition, states and outputs in
ladder diagram form. The method is equally easily implemented in logic
notation.

The state diagram technique is very powerful, but it can lead to con-
fusion if the basic philosophy is not understood. The often-quoted argu-
ment is that it takes more rungs or logic elements than a direct approach

Figure 2.51 The program scan and state transition diagrams

Figure 2.52 Auto/manual selection
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Figure 2.53 The first three transitions

Figure 2.54 Three of the six states
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programmed around the outputs. This is true, but programming around
the outputs can lead to very twisted and difficult-to-understand programs.
Figure 2.56 is one rung roughly corresponding to state 2 of our state
diagram. It mixes manual and automatic operation and its action is by
no means clear (it is known as spaghetti programming). Problems can
arise where transitions go against the program scan, like transition E in
Figure 2.50(b). If care is not taken, a sequence based purely on outputs
can easily end up doing two things at once, or nothing at all because of
the way in which the program scan operates.

Figure 2.55 Two of the plant outputs

Figure 2.56 An example of spaghetti programming approximating to
state 2
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Modifications are also tricky with a direct approach, but simple with
a state diagram. Suppose (as happened on the real plant) it is required to
add a dust extraction fan to reduce emissions. This should work during
the discharge and for about one minute after the discharge ends before
the hood is raised.

The new state diagram is shown in Figure 2.57. All that is needed is
a new state 6 (Post Run Fan). (In practice, the states and transitions

Figure 2.57 Modifications to a state transition diagram
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should be relabelled to keep a sequential order for state numbers and
transition letters, but we are showing it in the modify/test situation.) The
fan is to run in state 3 or state 6. The program changes are therefore
simple; a new transition J and a new state 6, modifications to state 0
(adding –] / [– for state 6) and state 4 (entry via J rather than D), adding
a 1-min timer (for transition J) and a new output for the fan starter.

State diagrams are being formalized by the International Electrotech-
nical Commission and the British Standards Institute, and already exist
with the French standard Grafset. These are basically identical to the
approach outlined above, but introduce the idea of parallel routes which
can be operated at the same time. Figure 2.58(a) is called a divergence;
state 0 can lead to state 1 for condition s or to state 2 for condition t with
transitions s and t mutually exclusive. This is the form of the state
diagrams described so far.

Figure 2.58(b) is a simultaneous divergence, where state 0 will lead to
state 1 and state 2 simultaneously for transition u. States 1 and 2 can
now run further sequences in parallel.

Figure 2.58(c) again corresponds to the state diagrams described earlier,
and is known as a convergence. The sequence can go from state 5 to state
7 if transition v is true or from state 6 to state 7 if transition w is true.

Figure 2.58(d) is called a simultaneous convergence (note again the
double horizontal line); state 7 will be entered if the left-hand branch is
in state 5 and the right-hand branch is in state 6 and transition x is true.

Figure 2.58 Grafset symbols: (a) divergence; (b) simultaneous
divergence; (c) convergence; (d) simultaneous convergence
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The state diagram is so powerful that most medium-sized PLCs
include it in their programming language in one form or another.
Telemecanique give it the name Grafcet (with a ‘c’), and others use the
name Sequential Function Chart (SFC, Allen Bradley) or Function
Block (Siemens). We will return to these in the next chapter.

Even the simple Mitsubishi F2 supports state diagrams with its STL
(Stepladder) instruction. These have the prefix S and can range from
S600 to S647. They have the characteristic that when one or more are
set, any others energized are automatically reset. A RET instruction
ends the sequence. The state diagram of Figure 2.59(a) thus becomes
the ladder diagram of Figure 2.59(b) which would be programmed for
the first few instructions

LD X 400
S S 601
STL S 601
OUT Y 431
LD X 401
S S 602 etc.

Where there are no branches and the sequence is a simple ring (oper-
ating rather like a uniselector), a sequence can be driven by a counter
which selects the required step. The counter is stepped when the transi-
tions for the current step are met. The GEM-80 has a SEQR (sequence)
instruction which acts as a 16-step uniselector.

The PLC-5 has two instructions which fulfil the same role. These are
called a Sequencer Input (SQI) and Sequencer Output (SQO) and are
controlled by a counter which gives the current step (or state). Each
instruction has a table with one row corresponding to each step (state)
number. For the SQI the table holds the inputs corresponding to the
required transitions to exit each state. For the SQO the table holds the
pattern of outputs to be energized in each state. The SQI output steps
the counter in the SQO when the inputs corresponding to the current state
occur as shown in Figure 2.60. Although the SQI and SQO give very
compact programs, the fact that the controlling data are only visible
in table form can, in the author’s opinion, make fault finding a little
cumbersome.

2.10 Micro PLCs
A recent innovation has been the introduction of very small PLCs with
a limited number of inputs and outputs. These have been designed for
applications such as greasing, heating and air conditioning systems
where the programs are written once then installed and sold as part of
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Figure 2.59 State diagrams on the Mitsubishi F2: (a) state diagram
(based on Grafset); (b) part of ladder diagram corresponding to the
start of (a)
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the final product or system. In many cases the end-user will not be
aware that a PLC is controlling the system. The low price of these
micro PLCs (under £100 at the time of writing) makes them very cost
effective even compared to one or two relays.

The Siemens LOGO! shown in Figure 2.61 is a typical micro PLC.
The unit shown has six inputs and four outputs. A range of LOGO!
PLCs are available with different numbers and forms of input and
outputs.

The LOGO! is programmed using function blocks, which can be
considered to belong to three groups:

• Connections (Co)
These cover Inputs (I1–I6), Outputs (Q1–Q4), Block outputs (B01,
B02, etc.) and fixed High and Low signals.

• General functions (GF)
Standard logic functions are covered here, such as AND, OR,
NAND, NOR, XOR and Inverters.

• Special functions (SF)
There are 11 special functions including the usual types of timer
(delay on, delay off and retentive, etc.) plus set–reset flip-flops,
counters and a very useful real time clock with adjustable cams.
Figure 2.62 shows a clock used for an application such as air condi-
tioning, where the cams have been set to make an output to come on
between 9 a.m. and 4 p.m. on Mondays to Fridays, 10 a.m. to 1 p.m.
on Saturdays and not at all on Sundays. The display in Figure 2.61
is showing a clock block with its three individually programmed
cams. The outputs from several independent clocks can be further
combined using the GF logic gates.

Figure 2.60 The Allen Bradley sequencer instructions
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Unusually, the program entry starts at an output. The programmer
selects what the output is fed from by first selecting Co, GF or SF then
the specific type. The inputs from this block are then selected and so on
until the full logic sequence for the output has been built. The logic for
each output is constructed in a similar manner.

Figure 2.63 shows a simple circuit for automatically opening and closing
a door. Typical applications are found at supermarkets, stores and garages.
The door is opened when motion detectors I1 or I2 detect movement
on either side of the door. Outputs Q1 and Q2 are connected to the
door open and close pneumatic solenoids. Limit switches I4 and I5 say,
respectively, the door is fully open or fully closed. These remove the
corresponding outputs when the door is fully open or closed, thereby
saving air. Note that each output inhibits the other to prevent both
solenoids being energized at once in the event of a fault.

Figure 2.61 Photograph of a LOGO! PLC. All inputs and outputs
connect directly to the PLC and no separate cards or power supply
are required. Photograph courtesy of Siemens
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The ‘x’ connections to blocks B03 and B04 mean these block inputs
are unused. The ‘R’ connection on the timer is a reset, and the standard
OR gate has three inputs, only two of which are used in this application.

Block B03 is a delay off timer. Its output comes on immediately when
any motion is detected on either side of the door, and stays on for
10 seconds when motion ceases. Note that blocks B03 and B04 are used
in both output circuits. The circuit for output Q1 was built in its entirety.
Output Q2’s circuit was only built back to the inverter B06 whose input
was then selected as Co (for connection) followed by B03 (denoting
output from existing block B03).

The LOGO! can, surprisingly, be programmed easily from just the
six buttons on its face. It can also be programmed offline on a normal
PC. Once debugged, the program is usually stored in an EPROM
plugged into the front of the PLC.

2.11 IEC 1131-3, towards a common standard
PLCs can be programmed in several different ways. In recent years the
International Electrotechnical Commission (IEC) have been working

Figure 2.62 A simple program using the clock function. The LOGO! is
competitively priced with a conventional cam timer
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towards defining standard architectures and programming methods for
PLCs. The result, published in Spring 1993, is IEC 1131-3, a standard-
ized approach which will help at the specification stage and assist the
final user who will not have to undergo a mind-shift when moving
between different machines. IEC 1131 parts 1 and 2 cover aspects of
hardware design.

Figure 2.63 A LOGO! program for controlling an automatic door. This
program is based on a standard Siemens circuit
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The earliest, and probably still the commonest, programming method
described in IEC1131-3 is the Ladder Diagram (or LD in IEC1131).

Function Block Diagrams (FBDs) use logic gates (AND/OR etc.) for dig-
ital signals and numeric function blocks (arithmetic, filters, controllers,
etc.) for numeric signals. FBDs are similar to PLC programs for the
ABB Master and Siemens SIMATIC families. There is a slight tendency
for digital programming to be done in LD, and analog programming in
FBD.

Many control systems are built around State Transition Diagrams, and
IEC 1131-3 calls these Sequential Function Charts (SFCs). The standard is
based on the French Grafset standard shown earlier in Section 2.9.2 and
Figure 2.58.

Finally there are two text based languages. Structured Text (ST) is a
structured high level language with similarities to Pascal and C. Instruc-
tion List (IL) contains simple mnemonics such as LD, AND, ADD, etc.
IL is very close to the programming method used on small PLCs
described earlier in Section 2.4.4, where the user draws a program up in
ladder form on paper, then enters it as a series of simple instructions.

Figure 2.64 illustrates simple examples of all these programming
methods. The next four figures show how IEC1131 is used in modern
programming software.

Like most programming software Siemens S7 is IEC1131 compliant
and Figure 2.65 shows the same simple instructions in LAD, FBD and
IL formats.

The next three examples are from Rockwell’s ControlLogix software.
Figure 2.66 is a more complex FBD diagram for a tank level alarm,
Figure 2.67 shows structured text programming and finally an example
of SFC programming is given in Figure 2.68.

A given project does not have to stick with one method; they can
be intermixed. A top level, for example, could be an SFC, with the
states and transitions written in ladder rungs or function blocks as
appropriate.

The aim of IEC1131-3 is to break the link between a PLC program
and a manufacturer’s specific hardware. It should allow, in principle, a
PLC program written for, say, a Siemens PLC to be transferred to an
ABB PLC with little effort. In practice, what seems more likely to occur
is that PLC programs will be written on personal computers in the non-
specific IEC1131 format then converted by PC based application
software to a PLC manufacturer’s specific format. This approach will be
of great benefit to manufacturers of fairly standard PLC controlled
machinery whose customers, understandably, specify the type of PLC
required to ensure standardization at their site. An IEC1131 conversion
program allows the machinery manufacturers to write the PLC program
only once, and simply convert it for each customer’s PLC.

075065757X-ch002.fm Page 101 Friday, July 25, 2003 2:49 PM



Figure 2.64 The five programming methods defined in IEC1131

075065757X
-ch002.fm

P
age

102
F

riday,July
25,2003

2:49
P

M



Programming techniques 103

Figure 2.65 Example of IEC1131 programming using Siemens S7
programming software: (a) Ladder (LD) programming; (b) Function Block
Diagram (FBD) programming
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It will be interesting to see the effect of IEC 1131-3. Most attempts at
standardization fail for reasons of national and commercial pride. MAP,
and latterly Fieldbus, have all had problems in gaining wide acceptance.
A standard will be useful at the design stage, and could be accepted by

Figure 2.65 (Continued) (c) Instruction List (IL) programming

Figure 2.66 More complex FBD programming using Rockwell
ControlLogix software. This produces a tank level alarm
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the end user if programming terminals presented a common face regard-
less of the connected machine. It is to be hoped it doesn’t act as a brake
on design ingenuity and inhibit development.

2.12 Programming software
Originally PLC manufacturers provided dedicated program terminals
which were specific to their PLCs. The Allen Bradley keypad shown
earlier in Figure 1.14 is typical.

As portable computers became cheaper and more readily available,
manufacturers moved to providing software which can run on a standard
portable PC. Often the link to the PLC is via a simple standard RS232
point-to-point link using COM1. Where the PLC and PC communicate
via a multi-station network some form of driver is required either as an
internal card in a spare PCI or ISA slot or via an external device plugged
into the PCMCIA port.

The programming terminal will have a hard life and care should be
taken to ensure it is sufficiently rugged. The author does not like small
notebook computers; they are not very robust, and, because of their
small size, you end up with external power supplies and PCMCIA

Figure 2.67 Structured Text (ST) programming with Rockwell
ControlLogix software
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devices hanging about outside it. The power supplies on many notebooks
will also only operate on 240 V, not the 55/055 sockets found on site in
industry. They, can, of course, run on batteries but only for a limited
time. Batteries tend to go flat just when they are needed! Notebooks are
also very easy to steal. A ruggedized industrial ‘luggable’ will accept
internal ISA or PCI cards and run on any supply voltage. Being large
and heavy they are much less attractive to thieves.

Early versions of PC based software ran under MSDOS, and many still
do. DOS based software is simple, fast, robust and does not put heavy
demands on the processor. It is quite feasible to run DOS programming
software on a 286 machine with a 20MByte hard drive. A typical
example is the Allen Bradley DOS based AI Series software shown in
Figure 2.69. This is based on a “tree” driven by the ten function keys.
From the top level, for example, Edit mode is selected by key [F3] then
Append by [F2] then the instruction type selected by one of the keys shown.

Nowadays all software is, of course, Windows based. Figure 2.70
shows the current RSLogix5 software. Contacts and coils can be
dragged onto the rung being edited. The Tree at the left gives access to
data tables, program files and processor functions. Examples of Siemens
S7 software were shown earlier in the previous section. Windows based
software is more intuitive and visual but, being mouse driven, can be
slower to use than DOS software. Using a mouse can be very difficult on

Figure 2.68 Sequential Function Chart (SFC) programming with
Rockwell ControlLogix software
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Figure 2.69 Editing on MSDOS based software. This is driven by
function keys

Figure 2.70 Editing on Windows based RSLogix5 software
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site with the programming terminal perched precariously on top of a valve
skid. Various forms of built-in mice exist on notebooks but these are all
a bit awkward. Hand-held mice with a small trackerball work fairly well.

The visual nature of Windows does, though, simplify many previously
complex tasks. For example, Figure 2.71 shows the two screen data

Figure 2.71 Simple configuration of an Analog Input Card with
ControlLogix programming software: (a) configuration of range to
engineering units; (b) setting of alarm levels using mouse dragging
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entry and drag set-up for scaling of an analog input card and alarm set-
ting on one channel of an analog input card. Previously this would have
been done with several rungs of program. Modern programming
software also comes with many useful diagnostic aids as described in
the following section.

2.13 Programming software tools
The programming software is not just used for the obvious task of
writing the program, it is also a valuable aid for fault finding. This section
describes some of the typical maintenance and fault finding features
found on modern programming software.

Once the controlling software has been debugged, it is almost certain
that any faults will be related to the plant devices (e.g. limit switches,
sensors, solenoids, contactors, etc.). All software will show the state of
digital devices on the ladder diagram or function block diagram. Usually
the state is shown by a colour change or high-lighting. Similarly the
value of numerical signals will be shown to allow numeric signals to be
monitored. Figure 2.72 is a typical on-line display, on which the state of
each signal, digital and numeric, can be clearly seen. Digital signal
which are ‘ON’ have an emphasized line either side of the contact.

Figure 2.72 RSLogix online monitoring
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It is also useful to monitor data in a tabular form. In Figure 2.73 display
of a bit data table for a PLC5 has been selected allowing the state of
several bits to be observed at once. Several windows can be open at
once allowing the signal path from an input to an output to be followed
without jumping around the program. Custom displays can also be built
to collect signals relevant to a particular task. Figure 2.74 shows an
example from the Siemens S7 programming software. The monitoring
software will also allow values to be written into the program for test
purposes.

Most faults on PLC controlled plant will occur with the plant devices.
After these, the Input/Output cards are the most vulnerable. If there is
a failure in the PLC system the software will identify the cause of the
failure, usually down to the point of identifying which device has failed.
Figure 2.75 shows the response of the Siemens S7 software to a deliber-
ately induced demonstration fault.

Forces are a common fault finding aid. These allow the state of an input
or output to be put into a known state from the program terminal and
over-riding the true state of the plant signals. These are used in three
circumstances.

The first, used during commissioning, allows the software to be tested
without the input and output devices being present. A more common

Figure 2.73 RSLogix data table monitoring
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Figure 2.74 Data monitoring with Siemens S7 programming software

Figure 2.75 Processor diagnostics on Siemens S7 programming software
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Figure 2.76 RSLogix Histogram

Figure 2.77 RSLogix Trending. The screen shows the operation of the
filter from Section 9.5
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use, though, is during fault finding where outputs can be turned on
directly from the terminal for test purposes. For example, a hydraulic
loading valve output signal could be forced on to see if the pump pressure
rises to the correct value. Similarly a sequence start could be initiated by
forcing a material present photocell input signal. Finally, in extreme
circumstances, forces can be used to temporarily allow a plant to continue
to run where some plant device has failed.

Forces are very useful but are also very dangerous. Usually the program-
ming terminal is remote from the plant and the controlled devices
cannot be seen. An applied force can often have unexpected results,
particularly if the plant is in a fault condition. The possible implications
of a force should always be carefully considered before the force is
applied. Warning tape should be put around any plant items that may
move without warning and lookouts employed if the plant cannot be
seen from the programming terminal.

Temporary forces to overcome plant failures may be acceptable in the
short term if there are no safety implications, but often the only person
who knows about the force is the person who installed it and the plant
runs without some protection for months or maybe even years. A log
book of forces should be kept and the reason for the installation of

Figure 2.78 On line help for a counter instruction in Siemens S7
programming software
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forces checked. If a particular sensor is failing regularly look at the
design. Is some form of mechanical protection required for the sensor or
its cabling? Is the sensor really needed at all?

Intermittent faults can be very difficult to trace. Programming software
often includes trending facilities allowing signal states to be observed.
Figure 2.76 shows the Histogram feature with RSLogix5. This has one
window showing the value in numeric form with the time at every
change. The data can be displayed in any radix, binary has been chosen
here. Below, the data is shown graphically. The data can also be stored
to a file and viewed later; very useful for chasing intermittent faults.

A trend feature is also provided for numeric data. Figure 2.77 shows
trends for the first order filter described in detail in the later Section 9.5.

Modern PLCs are very powerful and consequently have vast manuals
which describe all the features. Pull down Help is therefore included.
Usually this is context sensitive, for example clicking on a counter in the
Siemens S7 software then clicking on Help will bring up a window
describing the counter instruction and how it is used as shown in
Figure 2.78.
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3.1 Introduction 
‘. . . and the hydraulic system will have three hydraulic pumps plus an oil
circulation pump’. So ends a typical specification for a control system.
Like most specifications this simple statement leaves many unanswered
questions; are all three pumps to be run, or just one, or two? If less than
three, how is (are) the duty pump(s) to be selected? If less than three
pumps are used, are unused pump(s) to act as standby with automatic
changeover? How are pumps started, individually or all together? Does
the emergency stop operate on all (if not why not?). Does the circulation
pump start with the main pumps, or is it a precondition for starting
the main pumps? If the circulation pump trips, should the main pump(s)
trip? What protective signals are there (e.g. temperature/level)? If none,
why not, and are you sure? Should these stop the pumps or merely
produce alarms? Often such questions will reveal that the suppliers
have thought only of what equipment is needed, and not how it is to
be used.

The designer of a PLC system has to produce a program which fulfils
these often poorly defined requirements. Allied with this is the need
to assign I/O to plant signals and operator controls, and decide how
the all-important link between human beings and the plant is to be
performed.

Programmers involved with commercial software have similar prob-
lems, and have coined the term ‘Software engineering’ to describe how
a software project goes from the user’s original (and probably imprecise)
ideas to a successful working system. In this chapter we will examine
the factors that need to be considered in the design of a PLC control
system.
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3.2 Software engineering 
Figure 3.1 shows the six stages that any software project must go through
during its life. Although few projects are compartmentalized as neatly as
this, the principles apply to all. 

The first stage is analysis of the problem that is to be solved. The
supplier/programmer of the PLC system must meet with the other
contractors and the user to determine what controls are needed and
how the control actions are to be provided. Important considerations
such as operator controls need to be established at this stage. Ambiguous
descriptions (such as the hydraulic pumps of Section 3.1) should be
resolved. 

Of all the stages, analysis is the most difficult, as the ultimate end-user
and the other contractors probably have not considered the intricacy of
the control strategy, and do not have the experience to decide if an item
of plant is best controlled with joysticks, pushbuttons or a touchscreen
VDU.

An important point which is often overlooked at this stage is the need
to provide some form of manual ‘maintenance’ controls to test, or rescue,
a fully automated plant or sequence which has failed in some obscure
manner.

Figure 3.1 The stages of a project 
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The output from the analysis stage should be a description of how the
plant works, what operator stations and controls are needed (and how
these are to be implemented), what maintenance/fault-finding aids and
facilities are to be included and finally (but not least) a complete list of
the I/O signals with voltage/current specifications and their locations on
the plant. 

The difficulties (and the importance) of this first stage cannot be over-
emphasized. If the ambiguities and problems are resolved at the start,
the following stages are easy. Finding out at the commissioning stage
that the user wanted variable speed fans and an underpressure alarm
and ‘thought you knew that’ is not the way to ensure a smooth plant
start-up. If in doubt, ask; even if you are not in doubt, still ask, and
assume nothing. 

At this stage, the final testing requirements should also be defined.
If you do not know how you are going to test it, how will you know
if the plant meets the user’s requirements? 

With the worst stage over, the designer should produce a description
of what the control system contains, how it is going to perform and how
it will be tested. This is really recording what was agreed at stage 1. 

The next stage is to design the system; the cubicles, desks, and the
structure of the program. This latter action, known as top-down design,
is considered in the following section. 

At last the programming can be done, built around the structure laid
down at the design stage. No program should be constructed ad hoc
at the keyboard; that way lies spaghetti programming. Commercial
programmers estimate that this stage generally involves no more than
10% of the total effort. 

With the programming completed and the plant built, testing and
commissioning can start. The operation should be checked against the
specifications produced at stage 2. With all bar the simplest system, it
can be very time consuming to check all routes and actions given in the
specifications. There is generally pressure to ‘hand over’ the plant when
the basic operation has been tested but the ancillary, rarely used,
options are untried. Too often these tests are skipped, and the first time
a ‘firkling fault’ mode is tested is when the ‘firkling fault’ first occurs,
possibly years after the plant has started up. Inevitably, commissioning
of the control system will always be the last stage in a new plant, so the
control engineer ends up carrying everyone elses’ delays. It is therefore
important to establish what testing must be carried out before a plant can
start and what can be tested later, on line. On line testing, however, can
be very difficult and time consuming. 

Safety-related checks should never be skipped; finding out that an
emergency stop sequence does not work when it is used for the first time
in an emergency will ensure a visit from the Health and Safety Executive.
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The final stage is usually overlooked. Once the plant is handed over,
its control system must be maintained, a term used here not to mean
serviced in the mechanical sense, but covering fault finding, resolving
of bugs (‘we never meant it to work like that’) and (hopefully minor)
changes arising from modifications in the way the plant operates.
No plant is fixed, all change during their life in response to market or
technology changes, and these modifications require changes in the
control strategy. 

In commercial programming it is generally thought that maintenance
takes over 50% of the effort in a project’s life cycle. It is therefore essential
that the control strategy and program are constructed and documented
so they can be changed and modified easily at a later stage, possibly by
people who had no involvement with the previous five stages. 

3.3 Top-down design 
It is not uncommon for a PLC to contain several thousand ladder rungs
or logic segments. An unstructured program of this length can be very
difficult to write, and even more difficult to follow for maintenance and
fault finding. 

The programmer should not, therefore, write a single long program,
but break it down into many small program segments. Ideally, each
small segment should contain no more than ten ladder rungs or logic
elements as this is about the maximum that the human mind can hold at
any one time. The structure of these segments is one of the more
important aspects of the design stage of Figure 3.1. 

The best way of achieving a sensible split is to use a technique called
top-down design. This splits a control system into areas, which are
subdivided into sub-areas and so on until manageable sizes have been
achieved. The idea is best shown by an example. Figure 3.2 shows
a plant called a ladle furnace. This is controlled by a single PLC with
about 1750 ladder diagram rungs. 

The plant control can be broken down into the nine areas of Figure 3.3,
each of which can be broken down further, the full structure of the
power system being shown. The bottom levels can be programmed in
a few rungs. Figure 3.4 shows two of the bottom level blocks and their
plant and internal signals. The kWh block, for example, consists of two
counters stepped by the 100-kWh pulses from a power transducer when
the power is on (an internal signal from another block). Both counters
are reset at the start of a treatment, and the sequence counter is reset
at the start of a new sequence. The output of the block is two totals used
by other blocks for operator displays and automatic control. 

The resulting program structure should be recorded as part of the
control system documentation, and used as the foundation of the actual
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programming effort. One, not immediately obvious, bonus is that a
well-laid-out structure chart with signals clearly identified can be easily
split amongst several programmers. 

3.4 Program structure in various PLCs 
In high level computer languages, programmers tend to prefer languages
such as Pascal or C, which are inherently structured by their inbuilt
constructs, and view ‘non-structured’ languages such as BASIC or
FORTRAN with a certain amount of disdain. To some extent this is
unfair; it is possible to write perfectly structured programs in BASIC,
but the onus is on the programmer, and a Pascal or C program can easily
degenerate into spaghetti without due care. 

Similar observations apply to PLC programs. Many middle-range
machines (and all small machines) have no built-in structure elements
at all, leaving it to the programmer to decide on the layout and follow
a self-imposed discipline. Figure 3.5 shows an index for a small PLC
system controlling a three-unit water softener; the program structure is

Figure 3.2 Ladle furnace at Sheerness Steel controlled by a PLC (Courtesy 
of Sheerness Steel) 
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Figure 3.3 Top view of ladle furnace PLC and breakdown of one leg 
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Figure 3.4 Two blocks from Figure 3.3 with signals 

Figure 3.5 A well-structured and documented PLC program split into 
areas of about ten rungs. This makes faults easy to find 
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straightforward, and a fault on, say, Unit 2 Fast Rinse, could easily be
located in the program. 

Larger, and more modern, machines have built-in structure constructs.
To some extent these constrain the programmer in the same way that
a programmer in Pascal or C has a lot less freedom to make mistakes.
These PLCs generally provide methods for breaking the program down
into small understandable modules (with some larger machines such as
the Allen Bradley 5/250 having the Repeat/Until, Whiledo/Endwhile,
For/Next constructs for repeating the same operation on a block of data).

The most structured language is, possibly, the ABB Master, which is
similar to a compiled high level language in that all variables and proced-
ures need to be declared. The PLC program is split into one (or more)
programs labelled PC1, PC2, etc. It is recommended that each deals with
a different area of plant, and each program can have different scan rates.

These programs then contain control modules which can be enabled/
disabled or again run at specified time intervals. Within the control
modules there are function modules and sequencer modules, the latter
containing steps corresponding to the state diagrams described in
Section 2.9.2. The actual logic elements are contained in the function
modules or the sequencer steps. A complete program can thus be
viewed as in Figure 3.6(a) with a specific example being laid out rather
like an MSDOS or UNIX tree as in Figure 3.6(b). The actual structure
is more flexible than this description implies; function modules can
contain control modules, and a hierarchy of master/slave modules can
be built, but the basic idea should be apparent. 

Modules are labelled in a hierarchical manner down to the element
level, so the AND gate PC1.2.3.2 is the second logic element in function
block 3 of control module 2 of program PC1 (and has to be declared
as such as part of building the database) (Figure 3.7). This formal nature
imposes a discipline on the programmer. 

Siemens use a structure consisting of organization blocks (OBs),
program blocks (PBs), function block (FBs), subroutine files, which we will
discuss shortly, and sequence blocks (corresponding to state diagrams).
The basic building modules are the program blocks which equate to the
bottom units of top-down design. When first started, the machine com-
mences with organization block OB1 from which further PBs and FBs can
be called, as in Figure 3.8. This description is again somewhat simplified. 

Allen Bradley use a similar idea with the PLC-5. The programmer
can break the top-level program down into smaller program modules
which can be called as needed. In the PLC-5, the programs are linked
by a sequence function chart (or SFC) which is again very similar to
the state transition diagram described in Section 2.9.2. Each state and
transition is a small ladder diagram program, a typical example being
given in Figure 3.9. 
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Allen Bradley and Siemens both support the concept of subroutines
(called function blocks (FB) by Siemens). These are small programs
used to perform specific tasks which can be called repetitively by higher
level programs (Figure 3.10). For example, few PLCs support trigono-
metrical functions (sine, cosine, tangent) directly. It is relatively easy to
calculate the sine of an angle using the expansion series 

(3.1)

Figure 3.6 Structure inside the ABB Master: (a) typical structure of 
Master program; (b) tree view of program 

xsin x x3

3!
----- x5

5!
----- …–+–=
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Figure 3.7 Specifying a logic gate in the ABB Master 

Figure 3.8 Typical organization inside a Siemens PLC 
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where x is the angle in radians. For most applications the first three
terms will give sufficient accuracy. The sine of an angle theta (in degrees)
could therefore be found with a sequence similar to Figure 3.11
achieved with a few ladder rungs or logic segments. Let us make this

Figure 3.9 Allen Bradley PLC-5 SFC diagram 

Figure 3.10 Subroutines, available in many PLCs 
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Figure 3.11 Subroutine for sine (theta)
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a subroutine called Sine (what else?) with an input angle in degrees, and
returning the sine to the designated variable as Figure 3.11. The input
and output variables are called parameters. Whenever we want the sine
of an angle we can now call the subroutine program Sine. 

We can go further, though. The cosine of an angle is given by 

cos (theta) = sin (90 − theta) (3.2) 

where theta is in degrees, so we can write another subroutine to calcu-
late the cosine of an angle as in Figure 3.12(a). Note that this only has
two blocks, and calls the subroutine Sine (which does most of the work).
Finally, by observing that 

tan (theta) = sin (theta)/cos (theta) (3.3) 

We can construct a Tangent subroutine as in Figure 3.12(b). This calls
both the Sine and Cosine subroutines. A subroutine calling further
subroutines is called ‘Nesting’. 

The advantage of subroutines, of course, is the saving of processor
memory and the minimization of programming effort. They also make
the program easier to follow, as the maintenance staff or the programmer
making changes only need to examine a (possibly complex) routine at
one place only. 

Many PLCs allow a program to be split into executable blocks; in
Allen Bradley PLC-5s, for example, this can be done with an MCR
instruction (for Master Control Relay) and in GEM-80s a Start/End
Block command can be used. These allow a set of rungs to be skipped
(ignored) if the controlling instruction at the start of the block is not
true, as shown in Figure 3.13. These instructions again serve to structure
the program into small blocks, and also help to improve the scan time
by ignoring rungs which are not relevant at the current time. They can,

Figure 3.12 Subroutines Cosine and Tangent (using subroutine Sine): 
(a) Cosine; (b) Tangent 
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however, cause confusion to maintenance staff in the middle of the
night as the split of the program is not immediately obvious. 

3.5 Housekeeping and good software practice 
All computer software (whether data processing, commercial or control)
should: 

(a) perform its function reliably 
(b) behave in a predictable defined manner when the incoming data

are faulty (a behaviour described as ‘robust’ in the jargon) 
(c) be simple to understand and maintain 

The first of these requirements is obvious, and most PLC software will
(hopefully) do the job for which it has been designed. The other two points,

Figure 3.13 Example of start/end block structure 
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however, are often overlooked, and their absence may not be apparent
until the first time a problem occurs months (years?) after the plant has
been commissioned and the design team disbanded. 

Robust software has inbuilt protection against bad data from faulty
plant sensors or miskeyed operator inputs. Figure 3.14 shows an applica-
tion based on a system at the author’s plant. Material is supplied to
a customer’s specified weight, but is cut by length, by counting pulses
from the drive rolls. The operator enters a desired weight, and the PLC
converts this to an equivalent length. The resulting cut material is
weighed and checked against the desired weight, any error being used
to correct the next cut. 

This system contains many places at which bad data can occur; bad
operator input giving a ridiculous weight, bad readings from the weigh
system, electrical interference on the pulses from the drive rolls, to name
but three. Any of these could cause problems if the resultant faulty data
were handled as being correct. 

It is essential to include some form of checking. The operator in
Figure 3.14 can only enter weights within a specified range, and only
readings from the weigh system within a window specified as a percent-
age of the target weight are used for the trimming function. Bad operator
input or weights outside the ‘window’ are flagged as system alarms.
Similarly a time window for cuts can be calculated, with pulse-initiated
cuts only being allowed within this window and an emergency time cut
being initiated (and an alarm signalled) if no pulse cut is given before
the maximum time occurs. 

Figure 3.14 An automatic cutting system 
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Inevitably, robust software is more lengthy and complex; about 25%
of the software for Figure 3.14 is concerned with normal operation, the
remaining 75% dealing with abnormal conditions that may rarely (if ever)
occur. The protection is essential, however, to give operators and pro-
duction staff confidence in the system. 

Programmers take a certain perverse pride in the ingenuity of their
efforts and the minimization of the number of instructions used. Such
tendencies should be resisted even more than in commercial program-
ming, as the actual plant and program maintenance will be done by
people who will require clarity of operation. ‘Keep it simple’ should be
the motto; do not use complex methods and steer clear of the more
obtuse instructions available in a PLC instruction set. Remember that
some poor individual may have to see how it all works at three o’clock
in the morning. 

Figure 3.15 shows an example from my experience of how not to
write a PLC program. This application had one PLC controlling three
identical plants. The programmer started by constructing a software
multiplexer, effectively a three-way rotary switch, which copied all the
inputs for one selected plant to internal storage locations. There was
then one program (for all three plants) which worked on the internal
storage, and sent its outputs to internal storage again for sending to
the outside world via a software de-multiplexer. The multiplexer and
de-multiplexer were stepped per program scan, so the program dealt
with plant A on scan 1, plant B on scan 2, plant C on scan 3 then back
to plant A on scan 4 and so on. This was very clever and economical of
memory, but impossible to understand and fault find. In normal oper-
ation the operation could not be followed, as all that could be seen on the
programming terminal was a blur as the multiplexers cycled between
the different plants. When a plant failure occurred, the multiplexers had
to be locked into the faulty plant (shutting down the good plants) to
allow the operation to be observed. Tricks like this should be avoided
(and it is worth noting that this particular program was rewritten
completely within a year). 

The program should also try to reflect the plant operation. Figure 2.48
showed a common situation where either or both of two motors are to
be run as selected by a desk switch. For economy, a less than ideal
switch has been used. The simplest program is the single rung of
Figure 2.48(d) but I would suggest that the two rungs of Figure 2.48(c)
make the operation clear to the person encountering it for the first
time.

Good documentation is essential for clarity. Most PLCs can be
programmed offline on an MSDOS computer, and have the facility for
individual signals to be documented and explanatory comments added
to explain how the program works. This feature should be used fully;
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compare the undocumented program of Figure 8.38 with the annotated
version of Figure 8.39. 

One of the standard rules for all computer programming is ‘when
you put some data in memory, record where you have put it’. Failing to
do this is like shoving something in a cupboard then being unable to
find it a few weeks later. All use of I/O and internal storage should be
recorded. Annotation at the programming state helps here; if you have
chosen an internal store bit to represent ‘Water Overtemperature
Alarm’ and when you call it up in the program the annotation ‘Pump-1
Trip’ is attached, you know the same address has possibly been used
twice or the memory map is off the rails somewhere. 

PLC manufacturers provide store and I/O allocation charts similar
to Figure 3.16. These should be used meticulously. MSDOS-based

Figure 3.15 How not to write a PLC program: (a) program layout; 
(b) program operation 
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programming software invariably provides a printout of memory
usage, one example of which (for an Allen Bradley PLC-5) is shown in
Figure 3.17.

If the interaction of data in a program is complex it is worth producing
diagrams of data flow such as that shown in Figure 3.18. Such diagrams
help the planning of the software, and assist greatly in fault finding and
maintenance. 

Figure 3.16 The first stage of a project; hand allocation of I/O 
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Figure 3.17 Typical memory usage reports; it can be seen that B3/37 is 
unused, and the first free timer is T4:59. (a) Database usage; (b) database 
description 
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It should always be the aim to make the task of the people who
inherit the PLC as easy as possible. One way of achieving this is consist-
ency of programming style. If a motor starter has been programmed in
a certain way at one point of the program (checking, say, for tripping of
the motor protection and operation of the auxiliary contact), this style
and method should be repeated for all other motor starters. Particular
care over consistency needs to be taken where different parts of a pro-
gram are being written by different people, and a ‘house style’ is worth
developing. The Ford ‘EDDI’ concept discussed in Chapter 8 is one
example of this approach. 

3.6 Speeding up the PLC scan time 
A typical PLC scan time will be 10 to 20ms. This is adequate for most
applications linked to contactors, solenoids and similar electromechani-
cal devices. If, however, the PLC is being used with fast moving material
the scan time, and more important the variation in the scan time, can be
very important. For example, if a PLC is being used to cut material to a
set length, and the material is travelling at 10 m/s, a 15 ms variation in
scan time will correspond to a 150mm variation in the length. This
section looks at factors which affect the scan time and ways of improving
the speed. 

Figure 3.19 shows a typical rung. Most PLCs will scan this in the
order:

A, B, C, D, E, F, G, H, I, 

then update the output. To speed up the scan, though, most PLCs will
skip branches once they have found a branch that is true. If signals A
and B are true signals C, D, E and F will not be examined and signal G
will be tested after signal B. 

In the best case, with A, B, G and I all ‘1’, just four contacts have to
be examined before the output is energized.

E F

A B

C D

G

H

I O/P

Figure 3.19 Simple ladder diagram 
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In the worst case, with A, B, C, D and G all ‘0’ and the remaining signals
all ‘1’, all nine contacts have to be examined before the output
is energized. 

Similar considerations apply when determining if the output is to be
de-energized. If A, B, C, D, E and F are all ‘0’, the output can be de-energized
immediately without examining the state of G, H or I. 

To get fastest speed, therefore, signals which will most probably be
‘1’ or whose presence requires the fastest response should be placed on
the top of rungs and nearest the left-hand side. If there is a pair of rungs
whose outputs cannot occur together (e.g. Auto Raise and Manual
Raise) put the selection signal (e.g. Auto and Manual) as the first contact
in each rung so only one contact is examined in the unused rung.
Similarly a rung arranged as Figure 3.20(a) will operate faster than
Figure 3.20(b). Note that in the slower rung, time has been wasted by
repeating the top limit switch signal in each branch. 

Repetition of signals is a common error and usually occurs with per-
missives. The fastest way to handle these is to group all the permissives
together once into a permissive store then use this store in each rung
with requires the permissive. 

(b)

Limit Switch

Manual

Auto

(a)

Limit Switch

Limit Switch
Top

Top

Raise
PB

Position
1000

LES

Manual

Auto

Raise
PB

Position
1000

LES

Raise
Starter

Top Raise
Starter

Figure 3.20 Configuring rungs to improve the scan time: (a) fast oper-
ation (b) slow operation
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Mathematical operations are much much slower than bit operations,
and floating point operations are slower than integer operations. If
speed is important try to do all mathematical operations using integer
numbers, but care obviously has to be taken to avoid rounding errors
and overspills. A sixteen bit two’s complement number can cover the
range −32 768 to +32 767. 

Mixed floating point and integer arithmetic should be avoided as
these have conversion overheads. For example with the simple
arithemetic operation Int2 = Float1 + Int1 the PLC will first convert Int1
to an internal floating point number, add it to Float1 to give a floating
result then convert this result back to an integer to go into the integer
result Int2. 

Many arithmetic operations only have to be done rarely, some only
once at power up. A lot of time is wasted if arithmetic instructions are
obeyed on every scan. Only do arithmetic operations when they are
required. 

Many PLCs have control functions which can be used to reduce the
scan time. The commonest of these are Jumps which allow unused parts
of programs to be skipped as Figure 3.21(a). Subroutine calls can be used
in similar way with selected subroutines being called only when required
as shown on Figure 3.21(b). Both of these can make major improvements
but it should be noted that this can be confusing for people trying to
follow the program in the early hours of the morning as rungs which
are skipped or live in uncalled subroutines may appear to indicate a PLC
fault. 

Some PLCs have specific program files which can be allocated a
specific scan time. The PLC5 family, for example, can have a Selectable
Time Interrupt (STI) program which is obeyed at a fixed time interval
which can be as short as 1 ms. With a main program scan of 20ms, the
STI file could operate twenty times for one main program scan. This
speed, though, comes at the expense of the main program scan so STI
and similar files should be kept as small as possible to avoid dragging
the rest of the program files down. Many PLCs, of which the ABB
Master is typical, allow scan times to be assigned independently for each
and every program file in the processor. 

As explained in Section 2.2 and Figure 2.2 a PLC normally goes
through a scan which at its simplest level is: 

Read Inputs 
Obey Program 
Update Outputs 

Using tricks like STI files is not much use if you have to wait until the
end of the main program scan before the outputs are updated. Control
functions with names like Immediate Input and Immediate Output are
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therefore often provided which allows an input to be read or an output
updated without waiting for the normal beginning and end of the
program. An STI or similar file will normally have the structure 

Immediate Input <inputs used> 
Program 
Immediate Output <outputs used> 

so the I/O access is as fast as the program scan. 
Input and Output signals accessed by serial communication (often

called Remote I/O), add further time variations because the program
scan and the I/O scan are usually unsynchronized. If speed is of the

(a)

Auto rungs here

Manual rungs here

Program continues

Manual

LBL

LBL
Rest

Auto

LBL

Auto

Mode

Rest

JMP

JMP

Manual

Auto

Mode Auto

JMP

(b)

Mode Manual

JSR

Auto

Mode
Auto

Auto

JSR

Manual
Subroutine

Auto
Subroutine

Figure 3.21 Methods of sectioning the program to skip unnecessary oper-
ations: (a) use of Jumps (JMP) and Labels (LBL); (b) use of Subroutine calls
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essence, the I/O cards should be mounted in the same rack as the
processor so the access is by the much faster local rack backplane. 

Finally, major speed improvements can usually be made by removing
junk from the program. Most PLCs contain a vast amount of redundant
programs from equipment that has long gone, tests that have been made
or simply rungs that access plant devices which are no longer present.
These junk rungs take up memory, confuse people and reduce the
speed of the processor. It is good practice to go through the program
at regular intervals (typical every three months) and remove anything
which is not required.
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4 Analog signals, closed loop 
control and intelligent 
modules 

4.1 Introduction 
So far we have considered signals that are essentially digital (on/off ) in
nature plus numerical data from timers and counters. In many systems
(and the majority of small systems) these signals are all that is required.
Often, though, a PLC will be required to measure, or control, plant signals
which can assume any value in some predetermined range. Typical signals
of this type are temperatures, flows, pressure, speeds, etc. These are
known as analog signals. 

In a similar way a PLC may have to produce analog output signals to
drive meters and proportional valves, or provide a speed reference for
a motor drive controller. 

To meet these requirements a PLC needs analog input and output
cards. These have somewhat different characteristics to the simple
digital cards we have discussed so far. This chapter considers analog
signals, the way they are handled and the related topic of other ‘smart’
PLC modules. First it is useful to briefly review the types of analog
signals that are likely to be encountered. 

4.2 Common analog signals 
4.2.1 Temperature 

Measurement of temperature is probably the commonest analog function.
Although the simplest measuring device is the common mercury in glass
thermometer, it is not readily adaptable to give a remote reading. In
industry, remote temperature measurements are primarily made by three
methods. 
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The first of these is the thermocouple, shown in Figure 4.1, where
two dissimilar metals are joined together at the point whose temperature is
to be measured, and linked to a sensitive voltmeter at some remote
location. The voltmeter reading is a function of the two temperatures T1
and T2. Variation in the local temperature T2 will cause errors, so ‘cold
junction compensation’ is normally applied by measuring the local
temperature with some separate device and adding a correction signal as
in Figure 4.1(b). 

Many types of metal combinations can be used for different tem-
perature ranges, and are denoted by a letter. An R-type thermocouple,
for example, uses platinum with an alloy of platinum/rhodium and has
a range from 0 to 1700 °C; the commoner type-K thermocouple uses
chromel/alumel and has a range of 0–1100 °C. The signals from all of
these are very small; just 42 µV per °C for a type-K thermocouple. 

The next form of thermometer uses the variation of resistance with
temperature. A platinum wire constructed with a resistance of 100Ω at
0 °C will have a resistance of 138.5 Ω at 100 °C. Such devices are known
as PT100 sensors (PT for platinum and 100 for the resistance at 0 °C).
These can be used over the range −200 °C to +800 °C. To reduce the
error from the connecting cable resistance (which can be around 1 Ω)
the three- and four-wire connections of Figure 4.2 are used, which allow

Figure 4.1 The thermocouple: (a) principle of operation; (b) cold junction 
compensation 
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the PT100 resistance to be read accurately with a bridge circuit. Vari-
ations on the resistance thermometer use semiconductor materials. These
devices, called thermistors, exhibit larger, but non-linear, changes in
resistance. 

The final type of common thermometer is called the pyrometer and
measures the infrared radiation emitted from a hot surface. Pyrometers
have the advantage that they can be remote from the object being
measured, but they can only be used above 500 °C. 

4.2.2 Pressure 

With pressure measurement, it is important to appreciate that there are
three distinct forms of sensor, although all are really variations on the
differential pressure transducer of Figure 4.3(a). This gives an output

Figure 4.2 Resistance thermometer circuits: (a) three-wire circuit; 
(b) four-wire circuit 
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signal proportional to the difference in pressure between its two ports.
The gauge pressure transducer measures pressure with respect to
atmosphere; easily achieved by leaving one port open as in Figure 4.3(b).
Gauge pressures usually have a ‘g’ suffix, 1.4 psig, for example. The
final method connects one port to a vacuum to give absolute pressure
as in Figure 4.3(c). With normal atmospheric pressure at about 1 bar,
2.4 bar gauge would be 3.4 bar absolute. 

The basic measurement method illustrated in Figure 4.4 applies the
two pressures to a diaphragm, and infers the pressure difference by
observing the diaphragm deflection or measuring the force needed from
an electrical solenoid to keep the diaphragm central. The latter
technique is known as the force balance principle. 

Figure 4.3 The three forms of pressure measurement: (a) differential; 
(b) gauge; (c) absolute 

Figure 4.4 The principle of a pressure transmitter 
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4.2.3 Flow 

Flow measurement is important in many processes. There are, again,
several types of flow. Mass flow refers to the mass of fluid passing
a given point per unit of time (e.g. kilograms per minute). Volumetric
flow refers to the volume of fluid per unit time (e.g. litres per second).
With gases, which are compressible, volumetric flow needs to consider
temperature and pressure and refer the fluid back to some standard
condition (usually 0 °C and 1 bar, called STP for Standard Temperature
and Pressure). Finally we have flow velocity, which is the speed of the
fluid (e.g. metres/second). 

The commonest method of flow measurement generates a pressure
drop across a restriction in the pipe. The simplest of these is the orifice
plate of Figure 4.5(a) (with tappings at d and d/ 2 where d is the pipe
diameter). Variations on this theme are the venturi tube of Figure 4.5(b)
and the annubar of Figure 4.5(c). 

There is, however, one disadvantage. The pressure drop (i.e. the dif-
ferential pressure) is proportional to the square of the flow, i.e. 

Pd = kF 2 

where Pd is the differential pressure, F the flow and k a scaling constant.
This limits the turndown (the ratio between maximum and minimum
flow) to about 4:1, and requires a square root function to be available to
convert the differential pressure to linear flow (i.e. F = B Pd where B is
a constant). PLCs capable of reading analog inputs invariably include
a square root function. Needless to say, floating point (real) numbers
are needed if accuracy is not to be lost. 

Where a large turndown is needed, the turbine flow meter of
Figure 4.6 can be used. The rotation of the turbine blades is sensed
by a proximity detector to give a signal which is proportional to flow

Figure 4.5 Differential pressure flow measurement: (a) the orifice plate; 
(b) the venturi; (c) the annubar 
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(i.e. no square root extractor needed) and a large turndown (typically 10:1).
The disadvantage is wear in the bearings. 

The vortex shedding flow meter of Figure 4.7 also gives a linear
signal proportional to flow and measures flow by detecting the small
vortices generated downstream of a bluff obstruction in the flow path.
(Similar vortices can be seen when moving a hand through water.) In
Figure 4.7 an ultrasonic beam is used to detect the vortices. 

The final method of Figure 4.8 also uses an ultrasonic beam to
measure the flow, with the frequency change caused by Doppler shift
(change of frequency with velocity) being measured to indicate flow.
This method has the advantage that no intrusion into the pipe is
required. 

Figure 4.6 The turbine flow meter 

Figure 4.7 Vortex shedding flow meter 
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4.2.4 Speed 

Speed of motors, pumps, conveyors, etc. is often an indication of
process throughput. The commonest way of measuring speed is a DC
tachometer, which is simply a DC generator with an output voltage
proportional to the rotational speed. A typical device, the GEC BD
Tacho, has an output of 100 volts per 1000 rev/min. 

Digital pulse tachos use a toothed wheel in front of a proximity
detector, or a spoked wheel in front of a photocell, to give a pulse train
whose frequency is proportional to speed. A simple electronic circuit
can convert the frequency to a linear voltage. 

4.2.5 Weighing systems 

There are two basic methods of finding the weight of an object; these
are known as a strain weigher, or a force balance weigher. In the first
type, of which a spring balance is an example, the object to be weighed dis-
torts the support structure, and this distortion is measured to give an
indication of the weight. In the second type, of which two-pan kitchen
scales to which weights are added or removed is typical, the weight of
the object is balanced by some force (electrical, pneumatic or hydraulic)
which can then be measured. 

Most industrial weighing systems are strain weighers, and use a load
cell as the primary measuring element. In its commonest form this is a
cylinder to which strain gauges have been attached. These consist of
a fine web of thin wires similar to Figure 4.9 which, when subjected to a
strain, experience a small change in resistance as their length and
cross-section change. Because the gauges are attached to the cylinder of
the load cell, their deflection is determined by the changes in the
dimension of the cylinder caused by the load. 

Figure 4.8 Doppler shift flow meter 
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The resistance changes are very small (typically less than 0.1 Ω on
a base resistance of 100 Ω) and similar changes can occur from
temperature changes (see Section 4.2.1). It is usual, therefore, to arrange
four strain gauges per load cell with two loaded and two at 90 degrees
unloaded which, in a Wheatstone bridge, will give an output purely
dependent on the load and not on temperature. 

Weighing is something of a ‘black art’, and care needs to be taken
to ensure that the load is carried solely by the load cells, and jamming
or undesirable support by, say, pipes or cables is not occurring. Impact
shocks from falling objects should also be considered if damage is not
to occur. 

4.2.6 Level 

Liquid level is needed in many process industries. The simplest, and
most reliable, method uses the fact that the gauge pressure in a liquid
is directly proportional to the head of liquid above it, as shown in
Figure 4.10. The pressure is given by 

P = ρgh for SI units (pascals) 

or 

P = ρh for Imperial Units (psi) 

where ρ is the liquid density, g is the acceleration due to gravity and
h is the liquid head. Care must be taken to ensure that the pressure
transducer is compatible with the fluid. 

Figure 4.9 A two-axis strain gauge (Courtesy of Welwyn Strain 
Measurement) 
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Other methods use floats (whose position can be measured) and
techniques using low-level radioactive sources, as in Figure 4.10(b),
where the liquid blocks the radiation, altering the signal from a detector
(such as a Geiger-Muller tube) on the other side of the tank. 

4.2.7 Position 

Position is often measured not only as a signal in its own right
(measuring the position of a drill head, for example) but also to infer the
value of some other variable. The measurement of level is sometimes
achieved with a float whose position is recorded. 

A simple position measurement system can be obtained with a
free-moving linear or rotational potentiometer and a stabilized power
supply to give an output voltage directly related to the slider position
(Figure 4.11). 

Figure 4.10 Methods of level measurement: (a) differential pressure; 
(b) radioactive source 

Figure 4.11 Position measurement with a potentiometer 
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A more accurate device, with no contact friction and minimal
movement force, is the LVDT (for linear variable differential trans-
former) of Figure 4.12. The AC input signal Vin produces voltages V1
and V2 in the two secondaries of the transformer whose relative
magnitudes depend on the position of the moveable core. A phase-
sensitive rectifier produces a DC output signal whose amplitude varies
as the core movement. Optical encoders are also often used for accurate
position measurement. These are described further in Section 9.10.

4.2.8 Output signals 

So far we have considered analog signals which appear as inputs to the
PLC. Output signals are also needed, typical examples being to drive
meters, control proportional valves or provide required values (set-
points) for other controlling devices. A PLC dealing with analog devices
thus needs to be able to handle both input and output signals. 

4.3 Signals and standards 
It is apparent from the previous sections that the ‘raw’ signals from
the plant sensors are many and varied, ranging from a few millivolts
(for a thermocouple) to perhaps over a hundred volts for a tacho, and
exhibiting variations in DC volts, AC volts or even resistance. Some form
of standardization is obviously desirable if a vast range of analog input
cards is not to be required. 

The general form of an input signal can therefore be represented by
Figure 4.13. The raw signal from the sensor is converted to some standard
signal by a local electronics unit, the sensor and the local electronics unit
being known as a transmitter or a transducer. The standardized signal
representing the plant variable being measured can then be connected to
a standard analog input card. 

The obvious question is what this standardized signal should be.
Analog signals are low level and hence susceptible to electrical interference
(or noise as it is more generally known). A signal represented by an

Figure 4.12 The LVDT 
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electric current is less affected by noise than a signal represented by a
voltage, so a current loop is usually chosen. The transducer and the
receiving device are connected as Figure 4.14 with the current signal
being locally converted to a voltage by a suitable ballast resistor. A current
loop can also be used with several receivers (meter, chart recorder and
PLC input, for example) connected in series. 

The commonest standard represents an analog signal as a current
within the range 4–20 mA, with 4mA representing the minimum signal
level, and 20mA the maximum. If, for example, a pressure transducer
gave a 4–20-mA signal representing a pressure range of 0–10 bar,
a pressure of 8 bar would be represented by a current of 8× (20 − 4)/10 +
4 mA = 16.8 mA. A 4–20-mA signal is often converted to a 1–5-V signal
by a local 250-Ω ballast resistor. 

The 4-mA ‘zero’ signal (called the offset) serves two purposes. The
first is protection against transducer or cable damage. If the transducer
fails, or the signal cable is open or short circuit, the current through the
local ballast resistor will be zero, giving a ‘negative’ signal of 0 V at the
receiver. This is easily detected and can be used to give a ‘transducer
fault’ alarm. 

Figure 4.13 The components of a PLC analog input 

Figure 4.14 The 4–20 mA current loop
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The 4-mA offset current can also simplify installation. In Figure 4.14 we
assumed that the transducer was provided with a local power supply
and sourced the signal current. Such devices are available, but the
arrangement of Figure 4.15 is commoner (and simpler). Here the power
supply (usually 24–30V DC) is mounted local to the receiving device, and
the signal lines serve both to power the transducer and transmit the
current. The transducer draws current from the power supply in the
range 4–20mA according to the signal being measured. This current is
converted to a voltage by a ballast resistor as before. 

The 4-mA offset provides the current that the transducer needs to
keep working. Obviously a transducer with a signal range of 0–20mA
could not operate in this manner. Transducers similar to Figure 4.15 are
commonly called two-wire transducers. 

4.4 Analog interfacing 
4.4.1 Resolution 

An analog interface card converts a continuously varying analog signal to
a digital form that can be used inside a PLC program. The analog signal
is generally represented, initially at least, as an integer number. 

This analog to digital conversion (usually known by the initials
ADC) is inherently accompanied by a loss of resolution which depends
on the number of bits used. An 8-bit byte, for example, can represent an
integer in the range 0–255. If this was used to represent an analog
signal measuring a flow with a span (range) from 0 to 1800 l/min, one
bit will represent approximately 7 l/min (given by 1800/255). Any
control strategy in the program based on finer resolution is meaningless.
(Particular care should be taken with comparisons, as some values can
never be obtained; a flow of 138 l/min, for example, would never be
given by our 8-bit system; it would jump from 134 l/min to 141 l/min.

Figure 4.15 Two-wire 4–20 mA transmitter 
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Comparisons should always be based on (greater than or equal to) or
(less than or equal to). 

A commoner resolution is 12 bits. This gives a representation as an
integer from 0 to 4095. With our flow of 0–1800 l/min, one bit would
represent just under 0.5 l/min (1800/4095 = 0.44). 

This ‘coarseness’ is not the problem it might at first appear. Although
an analog transducer can give any value in its span, it will have inherent
errors. Many first-line transducers are only 2% accurate. If our flow
transducer had 2% accuracy, its measurement could be in error by
36 l/min. Alongside this error, the 7-l/min resolution is probably quite
reasonable. 

It is therefore useful to think of the resolution in terms of an error
which is to be added to the error from the transducer itself, as in
Table 4.1. 

Few industrial transducers have an accuracy better than 0.1%, and
a 12-bit conversion will add little error in most applications. 

4.4.2 Multiplexed inputs 

As we have seen earlier, a PLC generally works with a 16-bit word. If
our analog input card occupies one slot in a rack, and reads just one
analog input, it will be wasteful of I/O space (and very expensive). For
comparison, a normal digital input card reads 16 signals, and costs
about a quarter as much as an analog input card. 

The cost, and I/O usage, can be reduced by using multiplexing,
shown as a block diagram in Figure 4.16. Here four analog input
signals, separated from each other by isolation amplifiers, are selected
in turn by electronic switches and converted to a digital number by
a common ADC. Such cards commonly deal with four, eight or sixteen
input signals. 

If the card is occupying a single card slot, there obviously has to be
some way for the PLC to link the sequential readings from the ADC
with the actual input signals. This is a problem we shall return to in
Sections 4.4.4 and 4.4.5. 

Table 4.1 

No. of bits Range Error (%) 

8 0–255 0.5 
10 0–1023 0.1 
12 0–4095 0.025 
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4.4.3 Conversion times 

The conversion from analog to digital signal is not instantaneous
(although extremely fast ADCs with conversion times of nanoseconds are
used in digital TV systems). In most industrial systems there is a high
probability that electrical noise from the local AC mains (50 or 60 Hz,
depending on the country) will be present on the signal. 

A technique called dual slope integration ties the conversion time to
the local mains frequency, giving a high degree of AC mains-related noise
rejection. This gives conversion times of 20ms in the UK (50-Hz supply)
and 16.67ms in the USA (60-Hz supply). 

With a four-way multiplexer stepping round each channel in turn,
a signal will thus be sampled once every 80 ms. To this must be added
the program scan time and the remote scan time if the analog card
resides in a remote rack. 

An analog input card thus works by taking ‘snapshot’ samples of the
plant signals. A sampled system only knows about the values of its
samples. It cannot infer any other information about the signals it is
dealing with. Both of the signals of Figure 4.17(a) and (b) would produce
the same result of Figure 4.17(c) if sampled at the same rate. An obvious
question, therefore, is what sample rate we should choose if our samples
are to accurately represent the original signals. 

In Figure 4.18(a) a sine wave is being sampled at a relatively fast
rate. Intuitively one would assume this sampling rate is adequate. In
Figure 4.18(b) the sample rate and the frequency are the same. This is
obviously too low as the samples imply a constant unchanging output. 

Figure 4.16 Four-channel multiplexed analog input card 
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In Figure 4.18(c) the sample rate is lower than the frequency and
the sample values are implying a sine wave of much lower frequency
than the signal. This latter case is called aliasing. A visual effect of
aliasing can be seen on cinema screens where moving wheels often
appear to go backwards. This effect occurs because the camera samples
the world at about 50 times per second. 

Any continuous signal will have a frequency range of interest (called its
bandwidth). To permit an accurate representation of the original signal
to be rebuilt the sampling frequency should be at least twice this
frequency bandwidth. This, somewhat simplified, is known as Shannon’s
sampling theorem. 

Any real life system will not, however, have a well-defined bandwidth
and sharp cut-off point. Noise and similar effects will cause any real
signal to have a significant component at higher frequencies. Aliasing
may occur with these high-frequency components and cause apparent
variations in the frequency band of interest. Before sampling, therefore,
any signal should be passed through a low pass anti-aliasing filter to
ensure only the bandwidth of interest is sampled. 

Most industrial control signals have a bandwidth of a few Hz, so
sampling within Shannon’s limit is not normally a problem. Normally
the bandwidth is not known precisely so a sample rate of about 5 to 10
times the envisaged bandwidth is used. For example, with a typical 2Hz
signal a 10Hz sampling rate would be adequate requiring a sample time
of 100 ms. 

Surprisingly, this rarely gives problems. Practical industrial systems,
dealing with real plant signals concerned with materials with significant

Figure 4.17 Signals (a) and (b) both produce sample sequence (c). Both 
are equally valid 
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Figure 4.18 The effect of the sampling rate: (a) good sampling; (b) sample 
rate too low; (c) aliasing
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mass, rarely have bandwidths greater than 0.5Hz, and any frequency
higher than this can be considered to be extraneous noise and filtered out.
Temperature loops, for example, can often be sampled as slowly as
once every few minutes without introducing any errors. The designer
should, however, always be aware of Shannon’s sampling theorem and
check that the ADC conversion time is compatible with the signals
being measured. 

4.4.4 Channel selection and conversion to engineering units 

A typical eight way analog input card will provide eight 12-bit signals,
each ranging from 0 to 4095 in their ‘raw’ form. Generally these will
need to be accessed via the PLC program and converted to engineering
units such as °C, or psi, or l/min. If, for example, the range 0–4095
represents a flow of 0–1000 l/min, a resolution of about 0.25 l/min will
theoretically be achievable. 

The PLC must therefore address two problems; how to access the
multiplexed data via the signal card, and how to use the data in the pro-
gram. There are essentially two ways of accessing the data, summarized
in Figure 4.19. 

In Figure 4.19(a) the PLC selects which channel it wants to read
by sending a 3- or 4-bit address as an output instruction to the card
along with a ‘convert’ command. The card returns the digitized 12-bit
value and a ‘done’ signal which can be read with a normal word input
command. This method has the advantage that the programmer can
select different sample rates for different signals. 

The commoner method, though, is shown in Figure 4.19(b). A block
of storage locations in the PLC store is directly associated with the
analog input card. The card ‘free runs’, writing digitized values into
the store from where they can be read by the rest of the program. In
Siemens PLCs with fixed slot addressing, for example, the store
addresses are determined directly by the analog card position in the
rack; a card in slot 2 of the first rack will write its values to a block of
stores starting at location 192. 

Conversion from a raw 12-bit signal to engineering units can have
subtle traps for the unwary. In theory the conversion is simple. If N is
the raw signal, HR the high-range signal (corresponding to 4095) and
LR the low-range signal (corresponding to zero) then the measured
value, MV, is simply

(4.1)

If the calculation is done with real (floating point) numbers there should
be no problem, and equation (4.1) can be used directly. 

MV = N (HR LR)–×
4095

--------------------------------------- LR+
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If, however, integer numbers have to be used, great care must be
taken. If the multiplication N×(HR−LR) is performed first, arithmetic
overspill is likely unless 32-bit results can be accommodated. If the
division N/4095 is performed first, the equation will not work as N
is always less than 4095, giving an integer result of zero (and an MV of
LR). Wherever possible real numbers should be used if equation (4.1)
has to be performed. 

To avoid this problem, the different manufacturers have devised
methods to read analog input signals. In the ABB Master, for example,

Figure 4.19 Ways of linking a PLC and an analog input card: 
(a) direct selection; (b) free running 
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the database definitions for each signal define HR, LR, the sample rate
and a name by which the signal will be referred to in the program.
There are, obviously, detail differences, so in the next section we will look,
by way of an example, at the way analog signals are read by an Allen
Bradley PLC-5. 

4.4.5 Analog input cards 

The Allen Bradley PLC-5 reads analog signals with an analog input
card (1771-IFE) which can, in its simplest form, read eight analog
inputs. 

The PLC communicates with the card via instructions called ‘block
transfers’ which transfer data to (or from) a block of store locations.
Data transfers from the PLC to a card are called ‘block transfer writes’
(BTW) and, not surprisingly, transfers from a card to the store are ‘block
transfer reads’ (BTR). For each type of instruction, somewhat simplified,
the programmer states: 

(a) the direction of transfer (BTW or BTR) 
(b) the card address (rack, slot and slot half, left or right) 
(c) the store location address 
(d) the number of 16-bit words to be transferred 

The analog input card uses both BTW and BTR instructions, the BTW
being used once, after power up, to configure the module and the BTRs
subsequently to read the data as summarized in Figure 4.20. 

The post-power-up BTW in Figure 4.21 sets how the module is to
behave; whether it gives data in binary or BCD, whether the module
uses eight differential signals or 16 signals referenced to a common
0 V, and the maximum and minimum values for the input range (HR
and LR in equation (4.1)) on each channel. The card uses these to return
readings in engineering units (in 12-bit binary integer, two’s complement
format or 12-bit BCD). 

Figure 4.20 The Allen Bradley BTW and BTR instructions 
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Once set up, values can be read at the required time intervals with a
BTR as in Figure 4.22(a). This gives signal values in the specified store
locations along with over-range and similar alarms. The values can then
be used in the program; in Figure 4.22(b) an over-temperature check is
being made on the third analog signal from Figure 4.22(a). 

Figure 4.21 The BTW instruction slightly simplified. This rung sends 
15 words of data starting at N11:10 to the card in the left-hand position 
of slot 2 in rack 3 whenever B3/5 makes 

Figure 4.22 The BTR instruction. (a) Again slightly simplified, this rung 
reads 20 data values from the card in the left-hand position of slot 5 in 
rack 4 whenever B3/72 makes. The values (which could include digitized 
analog signals and error diagnostics) are stored from memory location 
N12:0. (b) Range checking the third value from (a) 
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4.4.6 Filtering 

The set-up data in Figure 4.21 include a filter time constant to provide a
first-order filter on the input signal. This helps to remove any noise on
the signal. If the analog readings on another system are unfiltered, or an
unusually long time constant is needed (the 1771-IFE of Figure 4.20 can
provide a time constant of up to about one second), the programmer
can provide a separate filter routine. 

A first-order filter can be represented by the simple differential
equation 

(4.2)

where x is the input signal (corresponding to the raw value from the
input card), y is the filtered signal and T is the time constant. 

In a PLC system we do not have continuous values for y and x, but
sampled values of y and x taken at intervals ∆ t (the update time of the
card, or the rate at which samples are initiated). 

We thus have a snapshot input sequence xn, xn − 1, xn − 2, where xn is
the most recent, and xn − 1 the previous, and a similar output sequence
yn, yn − 1, etc. 

We can approximate: 

� � (4.3)

Substituting back into equation (4.2) gives 

(4.4)

Solving for the filtered value yn gives 

(4.5)

This requires one store location to hold the last value of y (denoted by
yn − 1) and can be easily performed by the simple sequence of Figure 4.23.
Note that for equation (4.5) and Figure 4.23 to work, the update time
∆t must be consistent and known. 

4.5 Analog output signals 
PLCs are often required to drive analog output signals as well as read
analog inputs. Common applications are driving analog meters or chart
recorders and providing reference signals such as the desired speed for
a thyristor drive. Like analog inputs, these signals have standard voltage
ranges of 1–5V or 0–10 V or the current range of 4–20 mA. 

T dy
dt
----- + y = x

dy
dt
-----

y∆
t∆

-----
yn yn 1––

t∆
--------------------

Tyn Tyn 1– yn t =xn t∆∆+–

yn =
yn 1– ( t∆ T⁄ )xn+

1 ( t∆ T⁄ )+
---------------------------------------
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A typical analog output card, the Allen Bradley 1771-OFE, has four
output channels, each turning a 12-bit (0–4095) digital signal into an
analog output. Isolation amplifiers are used on the outputs to reduce the
effects of noise and allow the signals to connect into external devices fed
from different electrical supplies. The digital signals come from storage
locations inside the PLC as shown in Figure 4.24. This action is known
as a digital to analog conversion, or DAC. 

For best resolution the PLC should use the full 0–4095 range, but this
is frequently impossible. If the PLC, for example, is setting the speed
range of a motor from 0 to 1350 rev/min, it will need to convert 0–1350
into the range 4–20 mA. Equation (4.1) can be rearranged as 

(4.6)

where VDAC is the value passed to the DAC (in the range 0–4095). N is
the output number in engineering units, and HR/LR are the high- and
low-range values. As before, great care must be taken with equation (4.6)
to avoid overspill or loss of resolution. 

Figure 4.23 A simple first-order filter. If T >> ∆t (as is usually the case), 
A=∆t/ T and B=1 

Figure 4.24 Analog output signals

VDAC
4095 (N LR)–×

(HR LR)–
-----------------------------------------=
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The PLC-5 communicates with the 1771-OFE with the BTW instruc-
tion described in the previous section. The programmer sets up a block
of 12 words as in Figure 4.25(a), the first four of which contain the
values, and the balance the set-up data such as HR and LR. The block
of data is then written to the card with a BTW. Figure 4.25(b) shows
a typical example where an analog speed reference can be raised or
lowered by operator-controlled pushbuttons. Note the use of Greater
Than (GTR) and Less Than (LES) instructions to confine the counter
value within the allowed range of 0–1350 rev/min. 

Figure 4.25 Using an analog output card: (a) the data block (slightly 
simplified) for an Allen Bradley analog output card; (b) setting speed 
for a motor with a counter and an analog output card 
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Ranging as in Figure 4.25 allows engineering units to be used inside
the program; the counter in Figure 4.25, for example, holds the speed
directly in rev/min, but this is accompanied by a loss of resolution, as
explained earlier. For the range 0–1350 rev/min, we have a resolution of
about 0.1%, compared with the theoretical 0.025% resolution available
from the card. 

4.6 Analog-related program functions 
There are other operations that can be performed on analog signals.
A typical list, for the GEM-80, is 

SQRT Square root, mainly used with differential pressure flow
measuring devices (such as orifice plates) 

LINCON Performs X*(A/B) + C with limiting 
FGEN Multipoint straightline function generator used for

linearizing and similar functions (see Figure 4.26(a)) 
LIMIT Performs limiting of signals as shown in Figure 4.26(b) 

Figure 4.26 GEM-80 special functions useful for analog signals. 
(a) FGEN function, with N points at equal intervals ∆x. (b) LIMIT. 
High and low limits do not have to have the same values. 
(c) DEDBAND without and with offset
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RAMP Rate limiting (with different rise and fall rates). 
DEDBAND Deadband functions as in Figure 4.26(c). Useful for

preventing ‘dither’ in closed loop control when PV and
SP are close. 

ANALAG First-order lag. Used for filtering (see also Section 4.4.6). 

4.7 Closed loop control 
4.7.1 Introduction to control theory 

Many industrial processes require some plant variable (temperature,
pressure or flow, for example) to be kept at a fixed value or to follow
some profile. These schemes are normally based on the block diagram
of Figure 4.27 where the actual value is fed back from the plant and
compared with the desired value. This is known as feedback or closed
loop control. 

The required value, denoted by SP for Setpoint, is compared with the
actual value PV, for process variable, to give an error E, which is simply 

E = SP − PV (4.7) 

This is multiplied by a gain K to give an output OP from the control
mechanism where 

OP = KE = K(SP − PV) (4.8) 

This output causes a change in the plant, giving the output PV. In a
well-ordered plant, PV will be directly related to OP, allowing us to
write 

PV = A × OP (4.9) 

where A is a simple gain factor. 
Combining equations (4.7) to (4.9) allows us to write

(4.10)

Figure 4.27 Simple proportional closed loop control 

PV AK
(1 AK+ )
---------------------- SP×=
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i.e. the plant signal PV will follow the SP multiplied by a scaling factor
AK/(1 + AK ). The term AK is known as the open loop gain, and is often
denoted by G, allowing us to write 

(4.11)

It can be seen that for large values of G, the error between PV and SP
will be small. For G = 10, for example, 

PV = 0.91SP 

A large value of G can be obtained by using a large value of gain, K.
Unfortunately, in practical systems this often leads to instability, a topic
discussed in the following section. 

Figure 4.28 shows a modified type of control strategy, where the
output signal is the sum of the error plus the time integral of the error, i.e. 

(4.12)

This is known, for obvious reasons, as PI control, for proportional plus
integral control. 

The integral term will cause OP to change as long as there is an error
and OP will only be constant when the error is zero and SP = PV.
(The full analysis of a PI controller requires a knowledge of calculus.
Interested readers are referred to control theory textbooks such as the
author’s Industrial Control Handbook published by Butterworth-Heinemann.)
A PI controller thus provides zero error in the steady state without the
need for a high gain. 

In practical controllers, the term M in equation (4.12) is replaced by 1/Ti
giving 

(4.13)

where Ti is known as the integral time. The reason for this change arises
out of the underlying mathematics. 

PV G
1 G+
------------- SP×=

Figure 4.28 Proportional plus integral (PI) control 

OP K(E M E td∫+ )=

OP K E 1
Ti
----- E td∫+ 

 =
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A further modification is shown in Figure 4.29. Here a time derivative
(rate of change) term has been added, giving 

(4.14)

Not surprisingly this is known as a three-term or PID (for proportional
plus integral plus derivative) controller. The multiplier Td is known as
the derivative time. 

The derivative term brings two benefits. Because it responds to the
rate of change of error it will ‘kick’ the output as in Figure 4.29(b), when
the setpoint changes rapidly. The derivative term can also make a
system more stable and reduce overshoot. 

So far we have considered a plant signal following a setpoint. Closed
loop control is also useful where a plant is subject to disturbances from
the outside world as summarized in Figure 4.30. A level control system,
for example, could be affected by changes in the outflow rate, a
temperature control system will be affected by changes in ambient
temperature and the temperature of the material it is heating, and a flow
control system will be sensitive to changes in source pressure. Because
all of these will produce a change in PV, the controller will detect them
and modify OP to make PV = SP again, and remove the effect of the
disturbance. 

Figure 4.29 The PID or three-term controller: (a) controller block 
diagram; (b) effect of derivative term 

OP = K E 1
Ti
----- E d t Td

dE
dt
-------+∫+ 
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4.7.2 Stability and loop tuning 

Ideally we want PV to equal SP at all times. A real plant has finite
reaction times and non-linearities, and the ideal response is impossible.
Figure 4.31 shows some possible responses to a step change in SP (similar
curves could be obtained for a step disturbance). 

Figure 4.30 The effect of a disturbance 

Figure 4.31 Forms of step response: (a) required response; 
(b) overdamped; (c) critical damping; (d) underdamped; (e) unstable; 
(f) constant amplitude 
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An achievable practical response is usually similar to the somewhat
underdamped Figure 4.31(d). A common standard, known as quarter-
amplitude damping, aims for each overshoot to be 25% of the previous. 

The engineer has control over the response by adjustment of the gain
K, the integral time Ti and the derivative time Td. These can be set by
trial and error (a good starting point is often K = 0.5, Ti = 20 s, Td = 5 s) or
a good deal of time can be spent analysing the mathematics governing
the plant (again see the author’s Industrial Control Handbook). 

The required values can also be determined by experiment (although
the reader should be aware that the effects on the plant can be severe
and safety implications should be considered). The experimental
method described below, known as the Ziegler–Nichols method, should
give a quarter-amplitude response. 

The controller is initially set up as a proportional-only controller
(Ti = infinity, and Td = zero). Varying the gain K will change the
step response from the underdamped Figure 4.31(d) to the unstable
Figure 4.31(e). There will be a critical value of gain Kc where constant
oscillation will occur as in Figure 4.31(f ). The period of these oscillations,
Tc, is then measured. The required controller settings are then 

PI 
K = 0.45Kc 
Ti = 0.8Tc 

PID 
K = 0.6Kc 
Ti = 0.5Tc 
Td = 0.12Tc 

These values are best viewed as initial settings, which can be tuned for
best response. Increasing the gain, or decreasing Ti, makes a system
respond faster but decreases the stability. A good rule of thumb is to
make Td = Ti /4 when derivative action is used. 

Further tuning techniques are given in the author’s Industrial Control
Handbook. 

4.7.3 Closed loop control and PLCs 

A closed loop system based on PLCs will be similar to Figure 4.32. The
plant variable, PV, is read by an analog input card, and the output OP
provided by analog output cards. The setpoint, SP, is provided by the
operator (via a graphics terminal in Figure 4.32) or by some program
sequence. The PID algorithm is then provided by the program. 

It is possible to write PID algorithms with four-function (+ − ∗ /) math-
ematics, but it needs great care. The program scan time must be known
for the integral and derivative routines, and protection against output
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actuator saturation must be built in to overcome an effect called integral
wind-up. 

In most, if not all, PLCs which can support analog input and output
cards, the manufacturer supplies a PID function in the program library. In
this section we will look at the way the GEM-80 handles closed loop
control. 

The GEM-80 gets a value from the outside world with an AND
address instruction, and sends values to the outside world with OUT
addresses as in Figure 4.33(a) (from Sections 4.4.5 and 4.5 it will be
apparent that this is a simplification of what is really going on). Input

Figure 4.32 Closed loop control on a PLC 

Figure 4.33 Simple control with a GEM-80: (a) analog input and output; 
(b) integer proportional control; (c) proportional control with LINCON 
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addresses have the form An (e.g. A4) and output addresses the form Bn
(e.g. B3). The GEM-80 can also store numbers in W locations (e.g. a value
can be stored in W112). 

Let us first consider a simple proportional-only controller, where
E = (SP − PV). We could write OP = K(SP − PV) and perform the oper-
ation with integer math functions as in Figure 4.33(b). This, however,
has the disadvantage that the output will change in large steps. If K, for
example, has the value 4, the output will change in steps of 4. 

The GEM-80 has many built-in functions working with real numbers.
One of these is a linear function Y = AX + B, denoted by LINCON-S11.
We can use this as a gain function by setting B = 0. Combining this with
a more succinct way of writing the subtraction function gives us the
single rung of Figure 4.33(c). The A and B values for the LINCON are
stored in the addresses defined in the VALUE function. 

A full PID block, PIDABS-S34, is available and is used in its simplest
form as in Figure 4.34. The addresses for K, Ti, Td are specified in the
VALUE block following the PIDABS block. As written, these start at
address W220. Altogether, there are 15 storage locations concerned
with PIDABS. These include 

Fault Code 
Settings for K, Ti, Td Changeable by the programmer or by the program

itself to allow, for example, settings to be used in
different circumstances 

Output limits 
Rate limits Maximum rate of change of output 
Hold mode Drives output to a fixed value 
Suicide mode Drives output to zero 

These are all accessible by the program, and can be used to make
complex control schemes. 

A close relation of the PIDABS is the PIDINC function used when
the controller drives a motorized valve as in Figure 4.35. Here the
motor acts as an integrator itself, since 

(4.15)

If a conventional PID controller is used here, instability will result. The
PIDINC is the derivative of PIDABs and has the function 

Figure 4.34 Three-term control with a GEM-80 

Vpos OP td∫=
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(4.16)

When combined with the integral action of the motorized valve, a
normal PID action results. 

So far we have been concerned with purely automatic actions. Often
a manual mode is required, with an automatic changeover selection as
shown in Figure 4.36. There is a hidden problem here. 

When manual is selected the PID function is still active, and as it is
highly unlikely that PV will equal SP in manual, the integral term in the
PID controller will cause the output from the PID function to rise to full
output or drop to zero. When auto is reselected, PV will swing wildly
for some time until the PID function regains control. 

What is needed is a bumpless transfer which matches automatic and
manual values on changeover. In a GEM-80 this can be achieved with
the three rungs of Figure 4.37. The operating mode, automatic or
manual, is selected by a switch connected to digital input A2.0, which is
energized for automatic. (Note the good design practice; a lost supply to
the switch will make the control change to manual and will hold the last
output value.) 

Figure 4.35 The need for incremental PID control 

OP K d
dt
----- E 1

Ti
----- E dt Td

dE
dt
-------+∫+ 

 =

Figure 4.36 Auto/manual selection 
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The first rung selects the output from the PIDABS function (for
automatic) or from the manual control (in manual). The RAMP function
limits the rate of change of the manual signal. 

The second and third rungs perform the balance. W112 holds the
output value of the PIDABS function (with block starting at address
W100) and W132 holds the output value of the ramp function (block
starting at address W120). 

In automatic, rung 2 has no effect, but rung 3 writes the output value
B7 back to the ramp output W132. When a change takes place from
automatic to manual, the ramp will start at the last automatic value. 

Similarly, in manual, rung 2 writes the output B7 to the PIDABS output
W112, so on a change from manual to automatic, the PID function starts
at the last manual value. Rung 3 has no effect in manual. 

A bumpless transfer is thus achieved in both directions. 

4.8 Specialist control processors 
PLCs are not, of course, the only devices capable of performing closed
loop control. Three-term controllers are readily available (even as plug-in

Figure 4.37 Bumpless transfer on a GEM-80 

075065757X-ch004.fm  Page 172  Saturday, June 28, 2003  4:51 PM



Analog signals, closed loop control and intelligent modules 173

modules for a PLC rack) and controller manufacturers overlap with
PLCs by providing programmable analog controllers. 

Typical of these is the TCS Tactician, which uses a graphical
programming method to link together standard signal-processing
blocks. The ‘program’ is built on the screen with a mouse. 

Figure 4.38 shows a control scheme for temperature control of an
oil-fired furnace. There are three PID controllers, one for the tempera-
ture loop, and one each for the air and oil flow. The correct ratio is
maintained between the oil and air flows, with the air leading for
increasing heat and the oil leading for decreasing heat (known as lead/
lag control). This structure is literally drawn on a VDU screen. 

Schemes such as Figure 4.38 are much easier to program in control-
based schemes such as the Tactician, but general arithmetical and
sequencing schemes are simpler in PLCs. Which is used in a specific
scheme is a matter of judgement for the project engineer. 

4.9 Bar codes 
All articles bought in supermarkets are labelled with a bar code which
identifies the country of origin, manufacturer and the item itself. These
bar codes are read at the checkout by a scanner, and the price found
automatically from the store’s computer and added to the customer’s

Figure 4.38 A more complex system; lead/lag burner control 
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bill. This is a typical application of bar code technology which is being
widely introduced in industry and commerce as a way of tracking and
keeping inventory control of items with minimal human intervention.
For example, the ISBN numbers used to identify books are now read by
bar code readers in libraries and used to keep track of library loans for
the UK Public Lending Right (PLR) scheme. 

The structure of a bar code is shown in Figure 4.39. It consists of
a series of bars and spaces used to encode alphanumeric symbols in
a machine readable format. At either end is a quiet zone to allow the
reading system to sense the start and finish of the bar code. A quiet zone
is needed because not all bar code representations are of a consistent
length. The bearer bars are added when there is a danger that a mis-
aligned read scan may not catch all of the bar code data. The bearer bars
will then give a broad pulse which the reader will detect and cause the
read to be rejected. 

There is not a single universal bar code, and many different codings
are in use throughout the world. Some of the commoner ones are
shown in Figure 4.40. Code 39 uses nine bar elements per digit, three of
which are wide (hence the name). The nine elements are always made
up of four spaces and five bars. 

Figure 4.39 The structure of a bar code 

Figure 4.40 Common bar codes 
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EAN stands for European Article Number and was derived from the
earlier American UPC or Universal Product Code. Both use characters
constructed from two bars and two spaces occupying seven positions.
Only numeric data can be represented. EAN and UPC have long data
streams which can be subdivided into subsets by longer twin bars.
Supermarkets in the UK use EAN product coding, with three groups
denoting country of manufacture (UK is 5, France is 3 and so on), the
manufacturer (012427 is the Scottish soup maker Baxter) and the
product itself (020108 is Royal Game Soup). EAN is also used for ISBN
book markings. 

Interleaved 2 of 5 is again a numeric only coding and it represents
characters in pairs, one by the bars and one by the spaces. Each
character uses five positions, two of which are wide. 

The amount of data that can be held in a linear bar code is
determined by the length. Where a large amount of data is required,
two dimensional bar codes may be used. Some of the commonest 2D
codes are shown in Figure 4.41. These allow over 3 kbytes of data to be
encoded. Typically 1800 characters can be held in a 50mm by 50mm
square. All have extensive error detection and error correction built into
the codes. 

Figure 4.41 Examples of two-dimensional bar codes 
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There are two methods of encoding data in two dimensions. The
first, called stacked codes, is essentially multiple rows of linear bar
codes. The commonest of these are PDF-417 (widely used in the
automotive industry) and Code 16K. PDF-417 can have from 3 to 90
rows, and Code 16K up to 16 rows. 

The second encoding method, matrix codes, uses an array of squares
(e.g. data matrix) or hexagons (e.g. Maxicode) to encode the data and
some method of providing a position datum. The centre datum circles
used with Maxicode can be clearly seen. 

Stacked codes can be read with normal scanner systems, but need
careful alignment. Matrix codes need to be viewed as a whole, and they
are read by a charge coupled device (CCD) TV camera and the
digitized image analysed by a computer. This allows the reading to be
largely independent of rotational errors. The use of a CCD camera
removes the need for scanning; all that is required is a fairly high and
even level of illumination with no glare or reflections. For this reason it
is likely that CCD reading will become more common for linear bar
codes as well. 

Considerable self-checking is built into these codings. The structure
itself has a definite machine readable format which is easily checked by
a machine (e.g. the 3/9 relationship in Code 39). In addition the last
digit in the code is usually a check digit which is formed using ideas
similar to the CRC method described in Section 5.2.7. 

Industrial systems, unlike supermarkets, will normally use automatic
bar code marking systems and unattended readers. A bar code is read by
scanning a light beam across the code and detecting the reflection.
Visible or infrared light can be used with LEDs or low powered lasers as
the source. Infrared is attractive for industry because reads can be made
through oil and grease coatings. Usually the scanning is performed by
a vibrating mirror. 

The reflection can be specular (as occurs with a mirror) or diffuse (as
occurs from a sheet of paper). Bar code readers rely solely on diffuse
reflection. A bar code reading system can thus be represented by
Figure 4.42. The light beam should not strike the bar code at 90° as
might be first thought, as the resultant specular reflection could dazzle
the receiver. Usually angles between 60° and 80° are used. 

A bar code is scanned continuously, not just once, and a good read is
declared when the same information has been received several times. The
number of identical reads needed is set by the designer, but five is a
typical number. 

The physical relationship between the scan and the bar code
determines how many reads can be attempted. A bar code can be
arranged vertically (called ladder orientation) or horizontally (called
picket fence). 
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A reader at a given distance from a target bar code will have a fixed
scan length. In Figure 4.43, a reader with a scan length of 20 cm and
a scan time of 5ms (200 scans per second) is being used to read
a bar code sized 16 cm by 8 cm. The bar code is moving transversely at
65 cm/s. In the ladder orientation it will remain in view for 8/65 = 0.123 s
which will allow 24 reads (each taking 5ms). With the picket fence
arrangement it can only travel 4 cm whilst remaining fully in view,

Figure 4.42 Operation of a bar code reader 

Figure 4.43 Timings for a bar code read for ladder and picket fence 
orientation 

075065757X-ch004.fm  Page 177  Saturday, June 28, 2003  4:51 PM



178 Programmable Controllers

which, by a similar calculation, will only allow 12 reads. The chance of
getting (say) five identical reads increases with the number of reads, so
for this application the ladder arrangement is obviously the correct
choice. 

The reliability of a bar code system is measured by the first read rate
(FRR) which is how many times the first scan gives the correct data.
The FRR determines how many identical readings are needed before
a good read is declared. Typical FRRs are 90% for which three to five
identical reads would be needed. Systems can be made to operate at
much lower FRRs by increasing the number of identical reads required. 

Industrial systems requiring product identification will generally use
a bar code reader driven by a PLC. The Allen Bradley PLC family, for
example, includes bar code readers which can be directly connected to
a PLC rack via a bar code interface card. This uses block transfer read/
write (see Section 4.4.5) to transfer set-up data to the reader, trigger the
read, and receive bar code data back from the product. This section is
based on material supplied by Allen Bradley. 

4.10 High-speed counters 
We saw in Section 2.2 that the scan time limits the maximum count rate
of a PLC to about 10Hz. High-speed counter cards are available for use
where higher count speeds are needed, or the program scan time
introduces an unacceptable random error. 

In Figure 4.44, the counter is driven by a directional pulse encoder
(which produces two offset pulse trains as shown, allowing the count
direction to be observed). The counter value can be loaded from the
PLC, and read back when needed. The PLC can also download
a preset value, and the counter card drives these outputs showing the
relationship between the count and the preset. These outputs are DC to
minimize delays (a 50-Hz signal has a 10–20-ms uncertainty). 

4.11 Intelligent modules 
Most PLCs can be fitted with a wide range of intelligent modules. As
well as the bar code readers and high-speed counters described above,
intelligent modules can include vision systems for pattern recognition
(useful in quality control), position control systems for CNC machines
and robotics plus sensor modules for thermocouples and PT100
temperature transducers. All minimize the programming effort needed
in the main program. There are also add-on processor modules which
allow complex mathematical codes to be written in high-level languages
such as Basic or C and linked into the PLC program. 
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4.12 Installation notes 
Analog systems are generally based on low voltages and are conse-
quently vulnerable to electrical noise. In most plants, a PLC may be
controlling 415-V high-power motors at 100 A, and reading thermocouple
signals of a few millivolts. Great care must be taken to avoid interference
from the high-voltage signals. 

The first precaution is to adopt a sensible earthing layout. A badly
laid out system, as in Figure 4.45, will have common return paths, and
currents from the high-powered load returning through the common

Figure 4.44 An intelligent module; a high-speed counter 

Figure 4.45 Interference from poor earthing 
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impedance Ze will induce error voltages into the low-level analog circuit.
It should be realized that there are three distinct ‘earths’ in a system: 

(a) A safety earth (used for doors, frames, etc.) 
(b) A dirty earth (used for high-voltage/high-current signals) 
(c) A clean earth (for low-voltage analog signals) 

These should meet at one point and one point only (which implies that
all analog signals should return, and hence be referenced to, the same
point). 

Screened cable is needed for all analog signals, with foil screening to
be used in preference to braided screen. The screen should not be
earthed at both ends as any difference in earth potential between the
two points will cause current to flow in the screen as in Figure 4.46, and
induce noise onto the signal lines. A screen must be earthed at one point
only, ideally the receiving end. When a screened cable goes through
intermediate junction boxes, screen continuity must be maintained, and
the screen must be sleeved to prevent it from touching the frame of the
junction boxes. In the author’s experience, this needs almost personal
involvement as contract electricians seem almost brainwashed to earth
screens everywhere despite written instructions to the contrary! Earthing
faults in screened cables can cause very elusive problems. 

Figure 4.46 Earth loop formed by multiple earthing of screen 

Figure 4.47 Cable separation
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High-voltage and low-voltage cable should be well separated; most
manufacturers suggest at least 1 m between 415V and low-voltage
cables but this can be difficult to achieve in practice. In any case,
separation can only be achieved until some other person, not knowing
the system well, straps a 415-V cable to the same cable tray as a
multicore thermocouple cable. The author tends to use trunking or con-
duit for low-voltage signals as a way of identifying low-voltage cables
for future installers. Some people achieve the same result by using
cables with different-coloured PVC sleeves. 

In an ideal world, separate cubicles should be provided for 110-V/
high-current signals and low-voltage signals, but this is rarely cost-
effective. Where both types of signals have to share a cubicle the cables
should take separate, well-separated routes, and the cards be separated as
far as possible, as summarized in Figure 4.47. 
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5.1 Parallel and serial communications
Cabling is one of the most costly parts of any control scheme. There is
the cost of the cable itself, the support structure and cable tray, plus the
labour costs of pulling cable, ferruling and terminating the ends. If, in
the course of commissioning, it is discovered that some extra signals are
needed and there are insufficient spare cores, another expensive cable
will have to be pulled, with all the attendant costs and time delay. 

Figure 5.1 shows two PLC systems that need to exchange data. As
shown there are eight signals one way, 12 signals the other at 110 V AC,
and two 16-bit numbers at 24 V DC. Along with supplies, neutrals and
DC returns this represents 56 cores needing, probably, one 27 core and
one 37 core steel wire armoured cable, 3 off 110-V 8-bit digital output
cards, 3 off 110-V 8-bit digital input cards, 2 off 24-V digital output cards
and 2 off 24-V digital input cards. All the cards require labour to terminate
them inside the cubicles at each end. All told, it is not a cheap exercise.

Examples similar to Figure 5.1 are common. At my plant there are
arc furnaces (each controlled by PLCs) whose fume extraction is
handled by baghouses (each controlled by a separate PLC). The two
PLCs for each furnace need to exchange information so the fume
extraction can set its fan speeds, suction level, etc. to the furnace
performances, and to ensure that each furnace is interlocked with the
baghouse operation.

In Chapter 1 we described how remote I/O can be used to reduce
cabling costs. In this chapter we will see how similar ideas can be
developed to provide communication between PLCs, computers and
intelligent instruments. 

Figure 5.1 is a form of parallel transmission; all the data to be sent are
passed simultaneously. This method is widely used (at lower voltages)
to connect computers to printers and for bus-based computer instru-
mentation schemes such as the IEEE-488 bus described in Chapter 7. 
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In Figure 5.2 a single data line (plus a return) connects the transmitter
and the receiver, and the data are transmitted as a serial string of bits.
Since computers, peripherals, PLCs, etc. all work internally in parallel
for speed, parallel to serial conversion is required at the transmitter and
serial to parallel conversion at the receiver. The simplest way of achieving
this is to use shift registers as shown in Figure 5.2, into which data can
be loaded in parallel and shifted out one bit at a time. Specialist integrated
circuits called UARTs (universal asynchronous receivers–transmitters)
are used to provide this conversion and the control functions. Not
surprisingly, this is known as serial transmission.

The advantages of serial transmission arise from cost and flexibility.
All that needs to be installed for bidirectional communication is a small,
cheap, usually four-core (two pair) screened cable, although the signal

8-bit

12-bit

16-bit integer

PLC-2PLC-1

16-bit
integer

Total 56 cores

Figure 5.1 Parallel data transfer 

Figure 5.2 Serial data transmission
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levels are small and there is usually a cost penalty in that trunking or
conduit needs to be used for protection. 

Once installed, a serial communication system is not really constrained
in the amount of data that can be passed (although there will be a time
penalty for large amounts of data). Additional data items can be added
with no installation costs. 

The disadvantages are speed, noise immunity, safety and program
comprehensibility. Serial communication is obviously slower than parallel
transmission (by a factor equal to the number of parallel lines). This is
generally not a problem; on a dedicated PLC communication system
a response time of 0.5 s is easily achievable (and remote I/O systems
normally achieve around 30 ms). Response times can be longer on com-
mercial systems such as Ethernet, but these are generally not interfacing
directly with human beings or a plant in time-critical applications. 

The voltages in serial transmission are low, usually of the order of
10V, and hence prone to noise. Care needs to be taken in the installation
(conduit or trunking, separation and screening are advisable) and pro-
prietary systems include methods for error detection and repetition of
faulty messages. 

Despite these error-detecting correction schemes, a serial communi-
cation system should never be considered totally secure, and must not
be used for purely safety functions such as emergency stops. These
must always be hardwired. We will return to safety considerations in
Chapter 8. 

Finally we have program comprehensibility. The idea of serial com-
munications can be difficult to comprehend in the middle of a fault at
3.00 a.m. Essentially, what we are achieving is to link two areas of
memory in separate PLCs as shown in Figure 5.3. This added complexity
can bring great confusion if it is not supported by good plant documen-
tation.

Figure 5.3 Inter-PLC serial communication 
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5.2 Serial standards 
5.2.1 Introduction 

For a serial communication system to work, there needs to be a consistency
between the transmitter and the receiver. There must be definition of: 

1 Signal voltage levels. 
2 The transmission code (what the bit patterns mean and how the

message is built up). 
3 Transmission rates (the speed at which the bit pattern is sent). 
4 Synchronization. In Figure 5.2 we showed clocks at both ends of the

link. If these have a small difference in frequency (as they inevitably
will) the receiver will get out of alignment with the transmitter. Some
method must be provided to give synchronization between transmitter
and receiver. 

5 Protocols. Apart from the data, there will need to be some method
for the transmitter and receiver to interchange control signals such
as ‘I am unable to receive a message at present’. 

6 Error-checking methods and recovery procedures (‘that last message
didn’t make sense, please send it again’). 

Getting equipment from different manufacturers to work together over
a serial link can sometimes be very difficult. The problems usually arise
out of differences in one (or more) of the above points. 

5.2.2 Synchronization 

The theoretically simplest way to achieve synchronization is to have
a common clock for both the transmitter and the receiver, as the two
can never, in theory, get out of alignment. This is known as synchronous
transmission. 

Most systems, however, are asynchronous, and use separate clocks,
as in Figure 5.4. The messages are broken down into characters

Figure 5.4 An asynchronous data character 
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(typically 5–8 bits in length) and the two clocks are synchronized at the
start of each character.

The idle state of the line is a ‘1’ signal (called a ‘mark’ in telecommu-
nications). The character starts with a ‘0’ signal (called a space) followed
by the data bits, usually with least significant bit first. An error-correcting
bit (called the parity bit) is sometimes added after the data bits. This is
discussed in Section 5.2.7. Finally, the signal returns to the idle mark
state for a time before the next character can be sent. This is known as
the stop bit and can be 1, 1.5 or 2 bits in width, depending on the system.
The next character can follow a random time after the stop bit. The
transmitter and receiver clocks are synchronized at the start bit, and
only have to stay aligned for the 10 or so bits needed to send a character.

It may be thought that, with noise, mark to space transitions in the
data could be mistaken for start bits. In practice, the link will pull itself
back into synchronization in a few characters as shown in Figure 5.5.
A framing error is signalled by the UART when it receives a zero where
it would expect a stop bit. 

5.2.3 Character codes 

Many types of character code have evolved over the years, but now the
almost universal standard is the ASCII code (American Standard Code
for Information Interchange, also known as ISO 646) shown in Table 5.1.
Variations on this are the CCITT alphabet No. 5, and national options
such as the £ symbol in the UK. 

ASCII is a 7-bit code giving 128 different combinations covering full
upper/lower case alphanumeric characters along with punctuation and
32 control characters that we will return to in Section 5.2.6. 

5.2.4 Transmission rates 

The transmission signalling rate is expressed in baud, which is the
number of signal transitions per second. For the majority of serial links
that we shall consider, with two signalling states (0 and 1), the baud
rate and the bits/s are identical. For linking a PLC with an instrument,
a rate of 1200 baud might be typical. For proprietary PLC to PLC or
remote I/O links, with high-quality communication cable, rates as high
as 115 kilobaud will be used. 

This should not be interpreted as an ability to send 115 000 bits of
data down the cable in 1 s. We have already seen in Figure 5.4 that
splitting the data into characters with start/stop bits involves some
overheads, which increase with the error checking when full messages
are sent.
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Table 5.1 ASCII codes 

Control characters

Decimal Hex Char Decimal Hex Char

0 00 NUL 14 0E SO 
1 01 SOH 15 0F SI 
2 02 STX 16 10 DLE 
3 03 ETX 17 11 DC1 
4 04 EOT 18 12 DC2 
5 05 ENQ 19 13 DC3 
6 06 ACK 20 14 DC4 
7 07 BEL 21 15 NAK 
8 08 BS 22 16 SYN 
9 09 HT 23 17 ETB 

10 0A LF 24 18 CAN 
11 0B VT 25 19 EM 
12 0C FF 26 1A SUB 
13 0D CR 27 1B ESC 

Control characters can be obtained via the use of the CONTROL key and
the character in the right-hand column. Backspace (BS) for example is
ctrl-H.

Printable characters

Decimal Hex Char Decimal Hex Char 

28 1C FS 48 30 0 
29 1D GS 49 31 1 
30 1E RS 50 32 2 
31 1F US 51 33 3 
32 20 space 52 34 4 
33 21 ! 53 35 5 
34 22 “ 54 36 6 
35 23 # 55 37 7 
36 24 $ 56 38 8 
37 25 % 57 39 9 
38 26 & 58 3A : 
39 27 ‘ 59 3B ; 
40 28 ( 60 3C < 
41 29 ) 61 3D = 
42 2A * 62 3E > 
43 2B + 63 3F ? 
44 2C ’ 64 40 @ 
45 2D − 65 41 A 
46 2E . 66 42 B 
47 2F / 67 43 C 
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5.2.5 Modulation of digital signals 

So far we have considered a serial link transmitting digital data in its ‘raw’
form, i.e. as a series of voltage levels directly representing the bit pattern
we wish to send. This is known as the baseband transmission.

A digital signal has a bandwidth from 0 Hz (DC corresponding to
a string of continuous zeros or ones) to at least half the bit rate. Many
transmission media, such as radio telemetry and the telephone network,
have inherent low-frequency limitations and cannot handle baseband
signals.

The data are therefore modulated onto a carrier wave. There are
three different ways of achieving this: amplitude shift keying (ASK),

Table 5.1 (cont.)  Printable characters

Decimal Hex Char Decimal Hex Char 

68 44 D 98 62 b 
69 45 E 99 63 c 
70 46 F 100 64 d 
71 47 G 101 65 e 
72 48 H 102 66 f 
73 49 I 103 67 g 
74 4A J 104 68 h 
75 4B K 105 69 i 
76 4C L 106 6A j 
77 4D M 107 6B k 
78 4E N 108 6C l 
79 4F O 109 6D m 
80 50 P 110 6E n 
81 51 Q 111 6F o 
82 52 R 112 70 p 
83 53 S 113 71 q 
84 54 T 114 72 r 
85 55 U 115 73 s 
86 56 V 116 74 t 
87 57 W 117 75 u 
88 58 X 118 76 v 
89 59 Y 119 77 w 
90 5A Z 120 78 x 
91 5B [ 121 79 y 
92 5C \ 122 7A z 
93 5D ] 123 7B { 
94 5E ^ 124 7C | 
95 5F – 125 7D } 
96 60 ’ 126 7E ~ 
97 61 a 127 7F DEL 
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frequency shift keying (FSK) and phase shift keying (PSK). All are
summarized in Figure 5.6. One advantage of modulation is that it allows
several independent signals, modulated onto different carrier frequencies,
to be carried on the same cable. A modulated digital signal is said to be
using broad band or carrier band transmission. Often the term ‘carrier
band’ is used to imply FSK with one signal on the cable, and ‘broad
band’ is used where several signals share the cable. 

Broad band and carrier band both require devices to interface the
digital signals at the receiver and transmitter to the transmission media.
These modulate the signal at the transmitter, and demodulate it again
at the receiver. Such devices are known as modulators/demodulators or
modems.

Figure 5.7 shows a typical two-way arrangement using the public
telephone network and FSK. ‘Originator’ refers to the station which
originally established the link; subsequent communications are bidirec-
tional.

In Figure 5.7 there are two types of equipment whose names, and
more commonly abbreviations, appear widely in data transmission and
are the source of much confusion. The equipment at the transmitting
and receiving ends is known as data terminal equipment (DTE). This
covers computers, PLCs, printers, terminals, VDUs, graphics displays,
etc. The communication equipment (i.e. the modems) is known as data
communication equipment (DCE). 

The confusion arises because communication standards and protocols
are concerned with connecting a DTE and a DCE. When we link a PLC

Figure 5.6 Various forms of modulation for digital signals 
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and a printer we are linking two DTEs, and will probably have difficulties.
We will return to this problem in the following section. 

5.2.6 Standards and protocols 

RS232E 
For successful communications to take place, a set of rules must exist to
govern the transmission of data. These rules can be split into standards,
which govern voltage levels, the connection and control of DTE–DCE
interface, and protocols, which determine the content and control of the
message itself. 

Much of the early work on data transmission was done by the Bell
Telephone company in the USA, and the result of their work was
formalized by the Electrical Industries Association (EIA) into ‘A stand-
ard for the interface between DTEs and DCEs employing serial binary
interchange’. This standard is known as RS232 and is currently at
revision E. 

Worldwide standards are set by the Comite Consultatif International
Telephonique et Telegraphique (CCITT), which is a part of the United
Nations International Telegraph Union. The CCITT publishes standards
and recommendations, those for data transmission being prefixed by
letters V or X. Standard V24 is, for all practical purposes, identical to
RS232. 

Signal levels defined for RS232 and V24 are +6 V to +12 V at the
source for a space (zero) and −6 V to −12 V for a mark (one). These are
allowed to degenerate to +3 V and −3 V at the receiver. Other character-
istics such as line capacitance and edge speeds are also defined. The
connections are made with a 25-pin D-type connector. Figure 5.8
summarizes the main connections between a DTE and a DCE and the

Figure 5.7 A typical digital transmission system using modems 
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Abbreviation Description Description

Protective ground Protective ground

TXD

RXD

RTS

CTS

DSR

DCD

DTR

DTE

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

20 20

Transmitted date
(from DTE to DCE)

Request to send. Tells DCE
that DTE wants to send data

Signal ground (all signals are
referenced to pin 7)

Data terminal ready. Tells DCE
that terminal is on and ready

(Male) (Female)

Pin

Receive data from another
device via DTE to DCE

Clear to send. Tells DTE
it can send data to DCE

Data set ready. Tells DTE that
DCE is on and ready

Signal ground

Data carrier detect. Tells DTE
that DCE at far end of line is OK

DCE
(modem)

Pin numbers refer to 25-pin D-type connector
Minimal system uses pins 2, 3, 7
System with minimal handshaking uses pins 2, 3, 4, 5, 7
Specification defines additional signals for secondary channel,
calling etc.

Transmission
media

DCE DTE

At far end of line

Figure 5.8 Connections between DTE and DCE as specified by RS232
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meanings attached to each. These are only a subset of the full specification
(which is a rather lengthy document and very heavy going). 

There are many common sources of trouble with ‘standard RS232’.
The standard covers the connection of a DTE and a DCE. Connecting
a PLC to a printer is linking two DTEs. Theoretically, a ‘null modem
cable’ which crosses signals such as pins 2 and 3 (data transmit and
receive) should work, but usually does not. Manufacturers usually assign
their own, often peculiar, ideas to the pin allocation. Many printer manu-
facturers, for example, use pin 2 to receive data and make the printer
a DCE. Even IBM use a 9-pin D-type connector (rather than the stand-
ard 25 pin) for RS232 connections on their AT range of computers.
Acorn (for reasons known only to themselves) used a 4-pin DIN plug
on their BBC computer, and this has proliferated into other equipment.

Allied with this is an almost random interpretation of the use of the
control signals. It is not unknown for an ‘RS232-compatible instrument’
to have just two connections (corresponding to pins 2 and 7 on the DTE
in Figure 5.8). Such a device can have no data flow control at all. 

‘RS232 compatible’ thus nearly always means an extended period
with a breakout box or line analyser (both essential equipment for use
with serial links) and a collection of crimp plugs/sockets and D-type
shells. We will return to this problem in Section 5.2.8. 

RS422 and RS423 
RS232 was designed for a short-haul link between a DTE and a DCE,
usually within the same room. If RS232 is used at high speeds over long
distances (greater than a few metres), problems will occur. 

The EIA have acknowledged the limitations of RS232 for DTE/DTE
communications, and have issued two other standards, illustrated in
Figure 5.9. One major problem with RS232 is the referencing of signals
to a common ground (pin 7 in Figure 5.8) as in Figure 5.9(a). RS423
and RS422 (Figure 5.9(b) and (c)) use differential receivers to dispense
with the ground connection and overcome common mode noise. 

Nominal transmitter voltages are ±6 V with the signal sense being
determined by the relative polarity. Connection A is negative with
respect to B for a mark (one) and vice versa for a space. 

RS423 uses a single-ended transmitter and a differential receiver, allow-
ing a standard RS232 transmitter to be used provided the difference in
ground potentials does not exceed 4 V. RS422 uses both a differential
transmitter and receiver. The mechanical (37-pin connector) details are
defined in RS449. 

The 20 mA loop 
An unofficial early ‘standard’ is the 20-mA loop. This originated with
the early electromechanical teleprinters, but is still found in many
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applications. It consists of a switch driven by data at the transmitter,
a current source, and a current sensor at the receiver. Presence of current
is a mark (one) and absence a space (zero). 

The current loop, isolated from earth, gives good common mode
noise immunity, and overcomes differences between ground potentials
at either end of the loop. This is the main reason for its continued use.

Unfortunately there are no common standards for control, or even
which end of the loop provides the current source. Figure 5.10(a) is
known as active transmit, passive receive, and Figure 5.10(b) is passive
transmit, active receive. Little communication can take place between
a passive transmitter and a passive receiver.

Figure 5.9 Common data transmission standards: (a) RS232; (b) RS423; 
(c) RS422 

Figure 5.10 The two forms of 20-mA data transmission: (a) active 
transmitter, passive receiver; (b) passive transmitter, active receiver 
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Message protocols 
The standards described above cover the ‘mechanics’ of data transmission.
The message content is defined by the protocol used. In addition to
defining the form of a message (i.e. what group of bits form characters,
and what groups of characters form a message), the protocol must define
how communication is initiated and terminated, and what actions must
be taken if the link is broken during a message. The protocol must also
cover how errors are detected, and what action is then to be taken.

There are essentially three types of protocol in use, as shown in
Figure 5.11. Character-based protocols (Figure 5.11(a)) use control
characters from the ASCII set of Table 5.1 to format the message. Most
character-based protocols are based, to some extent, on IBM’s BISYNC
standard. 

Bit pattern protocols, such as IBM’s SDLC and ISO’s HDLC and
CCITT X 25, are based on Figure 5.11(b). Flag characters define the
start and end of the message, with the end flag being preceded by some
form of error control. 

The final type of protocol uses a byte count. The start of the message
is signalled by a start flag character followed by a count showing the
total number of characters in the message. The receiver counts in the

Figure 5.11 The three types of protocol commonly used in data 
communications. (a) The basic form of a character-based protocol. 
(b) The basic form of a bit-pattern-based protocol. (c) The basic 
form of a byte count protocol. Note that two error checks are used; 
one for the header (count and control) and one for the data 
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message characters and then validates the message with the error-
checking data. A common example of this type of protocol is DEC’s
DDCMP.

Of these, character-based protocols which are variations on BISYNC
are probably most commonly used (sometimes called BSC for binary
synchronous protocols). They are easy to implement and have the
advantage that they can be monitored with a simple terminal across the
signal lines. 

The control characters from the ASCII set commonly used are: 

• Hex 04 EOT End of transmission (often used as a reset to clear the
line).

• Hex 16 SYN Synchronizing character, establishes synchronization
(i.e. start) and sometimes used as a fill character. 

• Hex 05 ENQ Enquiry, used to bid for the line in a multidrop system
(see Section 5.3.4). 

• Hex 02 STX Start of Text. What follows is the message. 
• Hex 01 SOH Start of header. What follows is header information,

e.g. message type. 
• Hex 17 ETB End of transmission block. Data commenced with

STX or SOH is complete. 
• Hex 03 ETX End of text. Data commenced with STX or SOH is

complete and the end of a sequence block. ETX is normally followed
by some form of error-checking information, which is validated by
the receiver which replies with either: 

• Hex 06 ACK Acknowledgement. Message received error free and
I am ready for more data. Also used to acknowledge selection on
a multidrop system (see later), or: 

• Hex 15 NAK Negative acknowledgement. Message received with
errors, please retransmit. Also used to say ‘not available’ when
selected on a multidrop system. 

5.2.7 Error control 

The addition of noise to a digital signal does not necessarily result in
corruption. The original signal can be regenerated at the receiving end
providing the noise has not been sufficiently severe to turn a ‘1’ into a ‘0’
or vice versa. 

Noise generally has a power density distribution similar to that of
Figure 5.12, with zero mean and tails going off to infinity. If the digital
signal has voltage levels +V and 0 V, noise in region A will corrupt a ‘0’
to a ‘1’, and noise in region B will corrupt a ‘1’ to a ‘0’. The probability
of error is thus the sum of areas A and B divided by the total area under
the curve.
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This probability depends on the ratio between the magnitude of the
signal and the noise. The signal to noise ratio, SNR, is defined as:

(5.1)

An SNR of 20 is normally achievable. There is, however, no ‘cut-off’
value for noise, and there is a possibility of error whatever the value of
SNR. This probability can be calculated (using statistical mathematics)
and has the form of Figure 5.13. From this graph, a link with an SNR
of 20 will have an error rate of 10−5. This sounds good, but it represents
some 30 corrupt bits in the transmission of a 360kbyte floppy disk
(which contains 2.88 Mbits). 

Rather interestingly, as the signal gets swamped by noise (SNR < 1)
the error rate does not tend to 1 (as might be first thought) but 0.5.
What will be received will be a random stream of ‘1’s and ‘0’s, half of
which will, on average, be correct by chance. 

With even higher SNRs, 100% reception cannot be guaranteed.
A single bit in error can have severe results, changing the sign of a
number, or turning an ‘open’ command to a ‘close’ command, so some
form of error control is generally needed. 

An error rate of 1 in 105 implies a single error bit followed by 99999
correct bits. This is not a true picture. Anyone who has used a phone
will be aware that interference normally has the form of ‘clicks’ or ‘pops’
introduced by the switching of inductive loads local to the line. This
is similar to the noise found on data transmission lines. A click of 0.05 s
is ignored in speech, but represents the demise of 60 bits of data at
1200 baud. Noise, therefore, tends to introduce short error bursts
separated by periods of error-free transmission, and the error rate
represents the average over an extended period of time.

Figure 5.12 Power density spectrum of a noise signal. Noise in regions 
A, B will corrupt a digital signal with V volts between a ‘1’ and a ‘0’ 

SNR =
Mean square value of signal
Mean square value of noise
---------------------------------------------------------------------
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There are generally two ways of handling error control. The simplest,
used in almost all industrial systems, detects that an error has occurred,
and the receiving station asks for a retransmission. This is known as
automatic transmission on request, or ARQ. The ASCII characters
ACK (received OK) and NAK (received with errors, please send again)
are used for handshaking and control. 

The second method attempts to detect and correct any errors by adding
redundant characters into the message. This is known as forward error
control (FEC). The English language contains a lot of redundancy
(allowing communication by speech in difficult circumstances). Given
the sentence: 

Tod?? t?e w?a??er ?s su??y 

which has an error rate of 40%, and the fact that it is a statement about
the weather, it is quite straightforward to fill in the missing characters
to give ‘Today the weather is sunny’. 

FEC is needed for radio links to and from satellites and is also used
for the page addressing on Teletext (which uses a technique called the

Figure 5.13 Relationship between error probability and SNR 
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Hamming code). It adds significantly to the message length, and is con-
sequently not widely used in industrial networks. 

The simplest form of error detection is the parity bit. This is an extra
bit added to ensure that the number of bits in a single character or byte
is always odd, as shown in Figure 5.14(a). This is known as odd parity;
even parity (parity bit added to make number of bits in each character
even) is equally feasible, but odd parity is more commonly used. An
ASCII character has 7 bits, so the addition of a parity bit increases the
length to 8 bits. 

Parity is easily calculated with exclusive OR gates as shown for an
8-bit character in Figure 5.14(b). Parity-calculating ICs are readily avail-
able, such as the TTL 74180 and the CMOS 4531. 

Parity (or, to give it its full title, vertical parity check) can detect single
(or 3, 5, 7) error bits, but will be defeated by an even number (2, 4, 6) of
error bits. 

Additional protection can be provided by breaking the message
down into blocks, each character of which is protected by a parity bit,
and following the block with a block check character (BCC) which
contains a single parity bit for each column position as shown in
Figure 5.15. Normally, even parity is used for the column parity bits.
This is known as longitudinal parity checking. The BCC character has
its own odd parity bit which is calculated from the BCC character, not
the parity bits in the message. The initial STX or SOH are excluded
from the BCC calculations, but the terminating ETB or ETX are
included. 

Figure 5.14 Error checking with a parity bit. (a) The parity bit makes the 
number of bits in the word an odd number; (b) parity circuit for an 8-bit 
word using exclusive OR (XOR) gates 
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BCC can detect all odd numbers of errors, and many multiple-bit
combinations. It is defeated by an even number of errors spaced sym-
metrically around the block.

The most powerful error detection method is known as the cyclic
redundancy code (or CRC). Like the BCC method, this splits the
message into blocks. Each block is then treated like a (large) binary
number which is divided by a predetermined number. The remainder
from this division, called the CRC, is sent as a 16-bit number (two char-
acters of 8 bits) after the message. The same calculation is performed
at the receiver, errors being detected by differences in the CRC.

The calculation of the CRC is performed with a shift register and
exclusive OR gates, a typical example being the CRC-CCITT circuit of
Figure 5.16. 

A similar scheme, used on GEM-80 links, detects: 

• all single-bit errors 
• any odd number of errors 
• all single and double errors in the GEM message format 
• any two burst errors of two bits in the GEM message format 
• any single burst of 16 bits or less 

Figure 5.15 Block check character used for error checking 
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• all but 1 in 32 768 bursts of exactly 17 bits 
• all but 1 in 65 536 bursts of greater than 17 bits 

The use of CRC-checked blocks greatly improves the error rate. Typical
improvements of the order of 105 are achieved, giving an undetected
error rate of 1 in 1010 for a circuit with a basic error rate of 1 in 105. 

Normally, ARQ systems provide an acknowledgement or an error
signal to the initiating device or procedure at the transmitting end, good
reception being determined by the reception of the ACK from the
receiver. On receipt of a NAK (or no reception of ACK or NAK within
a predetermined time) the transmitter will resend the message. To stop
a line being clogged with retries, it is usual to set a limit on the number
of retries (often three or five) before an error is declared. This procedure
is summarized in Figure 5.17.

5.2.8 Point to point communication 

A PLC is often required to establish a simple serial link with a device.
Typical applications are reading data from an instrument or a bar code

Figure 5.17 Retries with an ARQ system 
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reader, or sending data as a setpoint to an instrument or producing
a report on a printer. In this section we will look at how this can be
achieved with a typical device, an Allen Bradley 1771-DA ASCII
module which communicates with the PLC-5 via the BTW and BTR
instructions discussed in Section 4.4.5. Other manufacturers’ PLCs
operate in similar (but of course not identical) manner. It should be
appreciated that the description below is a vast simplification of the
actual operation, and serves only to outline the principles (the manual is
150 pages long).

Point to point links are usually simple, employing, at most, parity
checks for error control. Where data are being read from an instrument,
the port on the instrument was probably designed to be connected to
a printer, and few, if any, of the control signals on Figure 5.8 will be
used. The first step for reading or writing data is therefore to determine:

(a) the connections on the instrument/device 
(b) the baud rate 
(c) the data format (ASCII, number of bits, parity used, number of

stop bits) 
(d) the way the control signals are used 
(e) how message transfer is initiated (when reading data) 
(f) the form of the message 

Fortunately (and rarely!) the ASCII module is pinned, and can behave
as a pure DTE. Its operating parameters (baud rate, etc.) are set up with
data sent from the PLC via a BTW instruction. 

The module operation is summarized in Figure 5.18. Data to/from
the outside world are buffered. The total size of these buffers is 2K bytes,
the split between input and output sizes being set as part of the BTW
configuration. 

Figure 5.18 Operation of ASCII module with block transfer instructions 

075065757X-ch005.fm  Page 203  Wednesday, July 9, 2003  4:45 PM



204 Programmable Controllers

Data from the outside world come into the input buffer, and are
passed to a block of store in the PLC-5 with a BTR instruction. Data to
the outside world are written to the output buffer with a BTW instruction.

A typical input message could come from a temperature transducer
with the form of Figure 5.19. We need to know when a message has
been received. The message will be read into the input buffer from the
instrument, and the PLC allowed to perform a BTR in two circumstances:

1 When the buffer is full (i.e. the buffer has been sized exactly to the
size of the data message), or 

2 A character predefined as a ‘terminator’ by the BTW configuration
has been received. This is commonly a carriage return < CR > or
< ETX > or even a character specific to the application. ‘C’ or a < CR >
could be used for Figure 5.19. 

Once in the memory, the data must be converted to numeric form. From
Table 5.1, it can be seen that hex 30 (decimal 48) must be subtracted from an
ASCII code to give a number. A procedure similar to that in Figure 5.20

Figure 5.19 A typical ASCII string from a transducer 

Figure 5.20 Conversion from ASCII digits to binary 

075065757X-ch005.fm  Page 204  Wednesday, July 9, 2003  4:45 PM



Distributed systems 205

must be used (with suitable range checking to prevent garbage being
accepted).

Writing data is similar, except that the ASCII string must be built up
inside the PLC. This requires breaking a number down into a byte for
each digit as summarized in Figure 5.21. The data are then sent to the
buffer with a BTW instruction. 

5.3 Area networks 
5.3.1 Introduction 

So far we have considered point to point links. For a true distributed
control system we need a method whereby several PLCs or computers
can be linked together to allow communication to freely take place
between any members of the system. 

To achieve this we need to establish a connection topology, some way
of sharing the common network that prevents time-wasting contention
and an address system that allows messages to be sent from one member
to another. Such systems are known as local area networks (LANs) or
wide area networks (WANs), depending on the size of the area and the
number of stations. 

5.3.2 Transmission lines 

Any network will be based, to some extent, on cable, and at the high
speeds used there are aspects of transmission line theory that need to be
considered. 

Figure 5.21 Conversion from binary to ASCII characters 
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Consider the simple circuit of Figure 5.22. At the instant that the
switch closes, the source voltage does not know the value of the load at
the far end of the line. The initial current step, i, is therefore determined
not by the load, but by the characteristics of the cable (dependent on the
inductance and capacitance per unit length). A line has a characteristic
impedance, typically 75Ω or 50 Ω for coaxial, and 120–150 Ω for biaxial
or screened twisted pair. The initial current step will therefore be V/Z
where Z is the characteristic impedance. 

After a finite time, this current step reaches the load R, and produces
a voltage step iR. If R is not the same as Z, this voltage step will not be
the same as V, and a reflection will result. Typical results are shown in
Figure 5.22(b). 

Figure 5.22 Transmission lines and characteristic impedance: (a) a 
transmission line; (b) effect of terminating resistor; (c) effect of a branch
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This effect occurs on all cables and is normally of no concern as the
reflections only persist for a short time. If, however, the propagation
delay down the line is similar to the maximum frequency rate of the
signal, the reflections can cause problems. It follows that a transmission
line should be terminated by a resistance equal to the characteristic
impedance of the line. Normally, devices for connecting onto a transmis-
sion line have a high input impedance to allow them to tap in anywhere,
with terminating resistors being used at the ends of the line. 

A side effect of this is that T connections, or spurs, are not allowed
(unless the length of the spur is short). In Figure 5.22(c) a T has been
formed. To the signal, coming from the left, the two legs appear in
parallel, giving an apparent impedance of Z /2 and a reflection. 

5.3.3 Network topologies 

From the previous section it should be apparent that any network can
sensibly only be based on a ring (which needs no terminating resistors)
or a line (with a terminating resistor at each end). 

Figure 5.23 is a master/slave system where a common master wishes
to receive or send data from/to slave devices, but the slaves never wish
to talk to each other. All the slaves have addresses, which allows the
master to issue commands such as ‘Station 3; give me the value of analog
input 4’ or ‘Station 14; your setpoint is 751.2’. Such systems are often
based on RS422.

The star network of Figure 5.24 is again based on a master with a
point to point link to individual stations. This arrangement is commonly
used for high level computer systems. Communication control is
performed by the master station. Station to station communication is
possible via, and with the co-operation of, the master. 

In Figure 5.25 all the stations have been connected in a ring. There is
no master, and all stations can talk to any other station and all have
equal right of access. The term ‘peer to peer link’ is often used for this
arrangement. With Figures 5.23 and 5.24 control was firmly in the
hands of the master. With the ring, some technique is needed to avoid

Figure 5.23 Master/slave network 
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clashes when two stations wish to use the line at the same time. We will
discuss this in the following section. 

Figure 5.26 is probably the commonest type of network used by
PLCs. It is a single line with terminating resistors and, like the ring, is
a peer to peer link where all stations have equal standing.

Figure 5.24 A star network 

Figure 5.25 Masterless peer to peer link or ring 

Figure 5.26 Peer to peer link arranged as a single highway with 
terminating resistors
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5.3.4 Network sharing 

A peer to peer link allows many stations to use the same network.
Inevitably two stations will want to communicate at the same time. If no
precautions are taken, the result will be chaos. Various methods are
used to govern access to the network. 

One idea is to allocate time slots into which each station can put its
messages. This is known as time division multiplexing, or TDM. Whilst
it prevents clashes, it can be inefficient, as a station will have to wait for
its time slot even if no other station has a message to send. To some
extent a mismatch between the frequency of messages from different
stations can be overcome by giving more slots to a hardworking station.
With a five-station network and stations labelled A to E, if A has a high
workload an order ABACADAEAB, etc. might be adopted. This is
sometimes known as statistical TDM. 

The empty time slot of Figure 5.27 uses a packet which continuously
circulates around the ring. When a station wishes to send a message it
waits for the empty slot to come round, when it adds its message. In
Figure 5.27, station A wishes to send a message to station D. It waits
until the empty packet comes round. Then it puts its message onto the
network along with the destination address D. Stations B and C pass
the message but ignore it because it is not for their address. Station D
matches the address and reads the contents (and appends that it has
received the message). Stations E–H ignore it, but pass it on. Station A
receives the message back again, sees the acknowledgement and removes
its message, leading the empty packet circulating the ring again.

Figure 5.27 Empty slot and token passing 
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A similar idea is a token passing, where a ‘permit to send’ token
circulates round the network. A station can only transmit when it is in
possession of the token, which is released when the acknowledgement
that the message arrived is received.

Both empty slot and token passing require some way of reinstating
the packet or token if the network is corrupted by noise or broken. This
is usually provided by a master station, or monitor station, but it should
be noted this is not fulfilling the same role as the masters in Figures 5.23
and 5.24. 

Empty slot and token passing are usually associated with rings,
although they can be used with a bus-based system if the stations are
arranged as a logical ring. 

Bus systems usually employ a method where a station wishing to
send a message listens to the network to see if it is in use. If it is, the station
waits. If the network is free, the station sends its message (thereby locking
out any other station until the message ends). This is known as carrier
sense multiple access (CSMA). 

Situations can still arise, however, where two stations simultaneously
start to send a message, and a collision (and garbage) results. 

This situation can easily be detected, and both stations then stop and
wait for a random time before trying again. A random time is used to
stop the two stations clashing again. This is known as carrier sense
multiple access with collision detection (CSMA/CD). 

There is a fundamental difference between TDM, empty slot, and
token passing as one group, and CSMA. With the former there is a
certain amount of time wasting, but every station is guaranteed access
within a specified time. With CSMA there is a little time wasting, but
a station can, in theory, suffer repeated collisions and never get access
at all.

A useful analogy, for which the author is indebted to Allan Roworth
of Siemens, is to consider traffic control. TDM/token passing approxi-
mates to traffic lights, and CSMA to roundabouts. In heavy traffic the
best solution is traffic lights; everyone gets through and the waiting is
shared evenly. Roundabouts can ‘lock out’ one road when the traffic
flow is heavy and uneven from one direction. In light traffic, however,
roundabouts keep the traffic flowing smoothly; and there are few things
more annoying than being brought to a halt by a red light, then have
nothing go past in the other direction. 

5.3.5 A communication hierarchy 

Early process control systems tended to be based on a single large com-
puter or PLC. The advent of cheap PLCs with good communications
has led to the development of a hierarchy of machines which split the
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tasks between them. This is generally arranged as in Figure 5.28(a) with
a hierarchy split into four levels. 

Level 0 is the actual plant, with devices linking to the next level by
direct wiring or simple RS232/422 serial links. 

Level 1 is the level the majority of this book is concerned with,
consisting of PLCs and small computers directly controlling the plant.

Level 2 is microcomputers, such as the DEC VAX, acting as supervisors
for large areas of plants. 

Level 3 is the large company mainframes, such as IBM’s AS400. 
Usually the layout is not as clearcut as Figure 5.28 implies. There are

also differences between different companies; some number the layers
from top to bottom and some ignore level 0. Normally there will be a
split of responsibility in the hierarchy; at the author’s plant, engineering
is responsible for levels 0 and 1 and data processing for levels 2 and 3. 

There are many advantages to distributed systems. The resulting tree
is conceptually simple, and as such is easy to design, commission, maintain
and modify.

A correctly designed system will be, for short periods, fault tolerant
and can cope in a limited mode with the failure of individual stations. 

Figure 5.28 Communication hierarchies: (a) a company-wide network; 
(b) a real system 
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At the time of writing the author is concerned with the design of
a new arc furnace which employs four PLCs and a VAX computer
arranged as in Figure 5.28(b). This split allows individual parts to be
designed and commissioned separately, and allows the plant to be put
into a safe state if any PLC fails or the communications are lost.

A distributed system can also bring about an increase in performance
as lower level machines take the work off higher level machines. In
Figure 5.28(b), the pulpit PLC issues broad commands to the lower
level PLCs, and concerns itself mainly with data gathering for the VAX
system. The lower level machines concern themselves with running the
plant and monitoring for alarm conditions, passing any information the
operator should be aware of back to the pulpit PLC for display on
VDU screens. 

5.4 The ISO/OSI model 
Neat as Figure 5.28 is, the interconnection between different machines
can bring even more problems than linking two ‘RS232-compatible
devices’. Common problems are different baud rates, flow control,
routing and protocols.

In 1977 the International Standards Organization (ISO) started work
on standards to try to ensure compatibility between different manufac-
turer’s equipment. This is known as the open systems interconnection
(OSI) model, and is primarily concerned with communication between
level 2/3 systems in Figure 5.28(a). 

It consists of definitions for the seven layers of Figure 5.29. Each layer
at the transmission end has a direct relationship with the same layer at
the receiving end. The function of each layer is, from the bottom: 

1 The physical link layer – concerned with the coding and physical
transmission of the message. Requirements such as transmission
speed are covered. 

2 Data link layer – controls error detection and correction. It ensures
integrity within the network and controls access to it by CSMA/CD
or token passing. 

3 Network layer – performs switching and makes connection between
modes. 

4 Transport layer – provides error detection and correction for the
whole message by ARQ , and controls message flow to prevent
overrun at the receiver. 

5 Session layer – provides the function to set up, maintain and discon-
nect a link, and the methods used to re-establish communication if
there are problems with the link. 
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6 Presentation layer – provides the data in a standard format (which
may require the data to be converted from their original form in the
initiating application). 

7 Application layer – links the user program into the communication
process and determines what functions it requires. 

As a very rough analogy, consider the placing of a verbal order by tele-
phone. This analogy is based on Siemens material published in their
brochure ‘Communications Setting the Pace in Automation’. 

1 Physical link layer – the phone is lifted and connected to the telephone
network. A dialling tone is heard. 

2 Error detection and control – it is a good line with no noise. 
3 Network layer – the number is dialled, 9 for an outside line and then

the number. The phone rings at the other end. 
4 Transport layer – the telephone is lifted at the receiving end. ‘This is

ACME products, could you hold on please, I’m handling another call.
OK, go ahead now. Sorry, I didn’t get that, could you repeat please?’ 

5 Session layer – ‘This is Aphrodite Glue Works, I have a verbal
order for you, number CAP4057, my account number is 7322D.’
The receiver makes a note of these details in case the call is broken
prematurely. 

6 Presentation layer – ‘I am using order number from the June 1998
catalogue.’ 

7 Application layer – ‘I require 100 off 302-706 and 50 off 209-417,
delivery by datapost.’ ‘OK, 100 off 302-706 and 50 off 209-417 will

Figure 5.29 The OSI model 
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be despatched by datapost this afternoon. Total cost £147.20,
invoice to follow.’ 

At any stage, the lower layers can interact. A burst of noise on the line,
for example, will cause the transport layer to ask for a repeat of the last
message. 

It can be seen that layers (1) to (4) are concerned with the communi-
cation and layers (5) to (7) are concerned with processing functions for
the particular applications. 

5.5 Proprietary systems 
5.5.1 Introduction 

The ISO/OSI model is mainly concerned with higher level communica-
tions such as linking minicomputers. At the level this book is concerned
with, we are primarily interested in linking PLCs. Each manufacturer
has tended to have its own standard (Modicon’s MOD-BUS, Texas
Instrument’s TIWAY, CEGELEC’s ESP) and these link their own
equipment in a straightforward manner. If, in Figure 5.28, PLCs 1, 2
and 3 were Allen Bradley, 4 and 5 were GEM-80s and 6, 7 and 8 were
Siemens there would be no real problems in linking similar PLCs. Allen
Bradley Data Highway would be used for the first three, CEGELEC’s
CORONET for the GEMs, and Siemens SINEC L1 or L2 for units 6, 7
and 8. Each of these is simple to use and, in the author’s experience,
very reliable. Linking between the different systems, however, is another
story. 

In this section we will look at various proprietary systems and at the
tentative steps taken to provide standards that allow linking between
different manufacturers. All are similar in principle, and provide useful
internal diagnostics for fault finding, and less useful green and red
communication LEDs on the cards. 

For reasons of space we shall consider how machine to machine links
are achieved in Allen Bradley, CEGELEC and Siemens PLCs. Each
PLC manufacturer has his own proprietary link, some of which are (in
no particular order): 

• ABB Masternet and Master Fieldbus 
• Gould/Modicon Modbus 
• General Electric GENET 
• Mitsubishi MelsecNET 
• Square D SYNET 
• Texas Instruments TIWAY 

All use similar ideas and are often tantalizingly close; this is a topic that
we shall return to in Section 5.5.6. 
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5.5.2 Allen Bradley Data Highway 

PLC-5s communicate with each other on a peer to peer (no master) token
passing highway based on twinaxial cable and operating at 57.6 kbaud.
Their trade name is Data Highway Plus (an earlier version called Data
Highway linked the predecessor of the PLC-5, the PLC-2 range). The
PLC station addresses are set on DIP switches on each PLC, and up to
64 stations can exist on one line with octal addresses 0–77. 

Communication is established with a single message (MSG) instruc-
tion. This can be set up to read or write a block of data, the programmer
specifying: 

(a) the start address at the local end 
(b) the start address at the target end 
(c) the length of the block to be transferred (in words) 
(d) the station address at the remote end 

In Figure 5.30(a), station 5 is performing an MSG write, sending six
words starting from N10:40 to a block from N7:10 at station 12. In
Figure 5.30(b), station 7 is performing a MSG read, taking eight words
starting from N10:0 at station 12 and copying them into a block starting
at its own N7:32.

Figure 5.30 The Allen Bradley message (MSG) instruction: (a) write 
message; (b) read message 
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The MSG instruction appears in a program as in Figure 5.31(a), the
transfer being initiated every time the rung goes true. The DoNe bit
goes true when it has been successfully completed. The ERRor flag goes
true when an error occurs. Common errors are a line fault, a non-
existent address at the far end, or the PLC at the far end shut down.
The cause of the fault is given in flags set in the message control word.
Link statistics (e.g. number of retries) are kept in the processor for
diagnostic purposes. 

The details of the MSG instruction are set up by the programmer via the
screen of Figure 5.31(b). These are mostly self-explanatory, with the poss-
ible exception of the remote link, which is concerned with sending data via
a gateway module to a different highway, possibly of a different type.

The data highway is also used by the programming terminal, so a
programmer can connect anywhere onto the data highway and link into
any machine on the network. 

Figure 5.31 (a) Using the MSG instruction; (b) Set-up data for a message 
instruction as seen on the programming terminal 
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Allen Bradley have followed the hierarchy of Figure 5.28, and one of
their products is the Pyramid Integrator, which combines a PLC-5 (the
5-250) and a MicroVax computer in a single rack, providing a direct
(backplane) link between the PLCs data table and the VAX program. 

5.5.3 Gem-80 Starnet, ESP and CORONET 

The GEM-80 has two forms of inter-machine serial communication.
The first, and simplest, method, known as Starnet, provides point
to point of master/slave communications (similar to Figure 5.23) with a
20-mA current loop and a protocol known as ESP (extended simple
protocol). This only provides master/slave communication, but slave/
slave communication is possible using the master to relay messages. 

The very flexible GEM data table was discussed in Section 2.3.4.
Serial communication uses the J and K tables and the P (preset table).
The basic form of the mechanism is shown in Figure 5.32. 

Addresses in the K table are used to hold data for serial output, and
those in the J table for serial input. The P table is used to set up the
presets for the link, such as the baud rate, whether a given machine is
a master or slave (GEMs use the term ‘control/tributary’), the size of the
blocks to be transferred and whether the transfers free-run continuously
or are initiated by the program. 

In free-running mode, the operation of the link is totally invisible to
the user; data written into K7 in the master machine, for example, will
appear, automatically, in J7 in the tributary port with address 0. The
actual operation is more flexible than this simple description would
imply; in practice, flexible allocation of the data table gives more control
and greater speed. 

The second form of GEM communication is a masterless peer to peer
link called CORONET. This operates on a screened twisted pair cable
(RG108AU) at 9.6K baud to RS485 signal standards. A line length of
4 km is possible with up to 32 stations in the basic form. 

Figure 5.32 The GEM-80 J and K tables 
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The J and K tables hold the Output/Input data and the P table is used
to preset each station on the link as before. The link does not free-run,
and each transfer has to be initiated by program. This is performed by
the I table, to which is written the target address and a send bit to start
the transfer. Check bits to say the message has been received are
provided in the I table. 

Both forms of communication set flags in the F (fault) table, and link
statistics showing the number of retries and failed messages are kept. 

5.5.4 Siemens SINEC 

Siemens PLCs have access to four forms of communication network
under the common name SINEC (Siemens Network Architecture for
Automation and Engineering). Two of these, prefix L, are low level
networks, and two, prefix H, are high level networks. 

SINECLI is a master/slave network covering a single master and up
to 30 slaves. It operates to RS485 standards on twin twisted pair. The
programmer can define the polling order, including repeats as described
in Section 5.3.4. The network basically provides master/slave communi-
cation, although, like CEGELEC’s Starnet, slave/slave communication
is possible by having the master act as a repeater. 

SINECL2, known as Fieldbus, is a peer to peer link using token
passing. This uses an open architecture, and is a possible candidate for
a future standard, as discussed in Section 5.5.6. 

SINELECH1 is a baseband network operating at 10 Mbaud on coaxial
cable with a maximum length of 2.5km and implementing the first four
layers of the OSI model discussed in Section 5.4. It operates to standard
IEEE 802.3, better known as thick-wire Ethernet (see also Section 5.5.5).
Up to 1024 stations can be supported, with CSMA/CD being used for
access control. 

SINELECH2B is a broadband network also operating at 10 Mbaud
on coaxial cable. It is based on standards IEE 802.4 and IEE 802.7,
conforming to MAP 3.0 (see Section 5.5.6). Access control, as required
for MAP, is by token passing. With the data being modulated onto a
carrier, the cable can also carry other services such as telephones and
closed circuit TV.

5.5.5 Ethernet 

Ethernet is a very popular bus-based LAN originated by DEC, Xerox and
Intel and commonly used to link the computers at level 2 in Figure 5.28.
It uses 50 Ω coaxial cable, with a maximum cable length of 500 m
(although this can be extended with repeaters). Up to 1024 stations can
be accommodated, although in practical systems the number is far
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lower. Baseband signalling is used with CSMA/CD access control. The
raw data rate is 10 Mbaud, giving very fast response at loading levels up
to about 20–30% of the theoretical maximum. Beyond this, collisions
start to occur. 

Stations are connected onto the cables by transducers known as
nodes on the network. Commonly, ‘vampire technology’ is used for
these transceivers, as shown in Figure 5.33(a). The transceiver clamps
onto the cable, with a sharp pin piercing the cable and contacting the
centre conductor. The arrangement of the pin shrouding prevents it
from contacting the screen. This approach allows transceivers to be
added, or removed, without disturbing the rest of the network. I must
admit to being more than a little apprehensive about vampire technol-
ogy, but it does seem to work. To avoid reflections (as discussed in Sec-
tion 5.3.2) a minimum spacing of 2.5m must be maintained between
nodes. To assist the user, Ethernet cable has ‘tap-in’ points marked on
its sleeving. Where a large number of nodes are to be connected locally,
the cabling arrangement of Figure 5.33(b) is used. 

An alternative to the vampire transceivers is the plug-in transceiver
using coaxial cable plugs, as in Figure 5.33(c). These are obviously
more secure, but have the disadvantage that the network is disrupted if
a node is added or removed. 

The transceivers are connected to a local controller which performs
the access control. Ethernet has three layers, shown in Figure 5.34,
which approximate to the functions performed by the same layers in the
OSI model discussed in Section 5.4. 

Ethernet is possibly the most successful and widely used LAN. Both
ABB Masterview and Siemens SINECH1 are essentially Ethernet
(although this is not specifically stated as such in their material). 

5.5.6 Towards standardization 

We have already discussed the difficulties of linking different equip-
ment. There are normally few problems in linking PLC networks to
higher level computers. PLC manufacturers publish their message for-
mat and protocols, and interfacing software (called ‘drivers’) has been
written for all common computers and PLCs. The difficulty comes
when you want to link two machines at level 1 in Figure 5.28. In many
cases, the only economical solution is to do it through the computers
and the higher level link. 

General Motors (GM) in the USA were faced with this problem and
attempted to specify a LAN for industrial control. This was called MAP
(Manufacturing Automation Protocol). A similar office-based LAN
called TOP (Technical Office Protocol) was conceived at the same time.
With GM’s purchasing muscle, it involved several automation equipment
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Figure 5.33 Ethernet connections: (a) vampire connector; (b) Ethernet 
cable arranged in loops to provide connection separation
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manufacturers. A firm commitment to the OSI model was made, and
the network based on broadband token bus as specified in IEEE 802.4
(compare Ethernet; baseband CSMA/CD, to IEEE 802.3). The token
bus was chosen as it is deterministic; the response time can be predicted
(see discussion on roundabouts and traffic lights in Section 5.3.4).

MAP (currently at version 3.0 at the time of writing) seems to
have gone slightly off the rails. The draft title for this chapter was

Figure 5.33 (cont.) (c) break the line screw connector 

Figure 5.34 Ethernet architecture 
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‘whatever happened to MAP?’. In the course of the research for this
book, major PLC manufacturers were visited. Each could interface
MAP, but for each (with the exception of Siemens SINECH2B) it
seemed to be an expensive add-on which the customer could ‘have if
he really wanted’.

There appear to be several reasons for this distinct lack of enthusiasm.
The first is a bureaucratic organization and a changing specification.
The term ‘moving target’ was used independently on several occasions
by different manufacturers. The second reason is cost; MAP links often
cost more than the PLC to which they are connected. The expression
‘Designed by big organizations, for big organizations’ was used, and
seems apt. The third reason is speed; by using token passing MAP is
slow by comparison with Ethernet and the OSI model is not really
designed for time-critical applications. The non-deterministic nature of
CSMA/CD does not seem to cause any problems up to about 30% of
the theoretical maximum loading, and real systems normally operate
below 10% loading. The final, and perhaps most crucial, fact is that
MAP seems to have settled at a level where it is in direct competition
with established LANs such as Ethernet rather than the proprietary
systems at level 1 of Figure 5.28. 

In the mid-1980s MAP was going to be the common standard of
industrial control. MAP systems have been installed, both in Europe
and the USA, but it has not yet achieved anything like acceptance. 

A typical example of the problems that a fieldbus system may
encounter is the introduction of new ideas. All the communications sys-
tems described so far are based on what is called the source/destination
model. If station A has information for station B, a message is sent with
the format: 

Source A | Destination B | Data | CRC 

If this information is to be sent to several stations, each will need their
own message. In applications where multiple setpoints have to be sent
to multiple controllers, the delay caused by the time shift between the
messages can cause problems, although this can be overcome to some
extent by the use of group or global addresses as used by Profibus. 

In addition, if station A needs information from station B (the state of
an interlock for example), station A must perform a read on each occasion
the data is required. 

A recent development, called the producer/consumer model, uses
a different approach. Here data is placed onto the network with no
indication as to who it is for. The format is now simply: 

Identifier | Data | CRC
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All stations using this data accept it at the same time, eliminating the
need for multiple messages. This significantly reduces the number of
messages and hence increases the network speed. 

The placement of data onto the network can be done in two ways.
The first, and fastest, is ‘notify on change’. Here a station only places
information on the network when a new value is different to the old.
Stations with an interest in this data assume that the status or value
remains the same until notified otherwise. There are obvious dangers in
this, and a regular pre-defined ‘heartbeat’ (similar in principle to the
later Figure 5.37) is included to say a station is active on the network. 

The second approach updates on a time basis, each data item having
its own, or a global, update time. 

At the time of writing, Foundation Fieldbus is the only producer/
consumer fieldbus network, and Rockwell (Allen Bradley) have also
adopted the method for their ControlNet. The latter is interesting as it
combines the ideas of their remote I/O and Data Highway onto one system
and allows PLC racks (and their data) to be shared equally amongst
several processors and not dedicated to one as before. There are also
European attempts at standardization. In conjunction with the Instrument
Society of America, specifications for a low cost (twisted pair) low level
network called Fieldbus has emerged. Its full specification was due to be
completed by 1992, but (inevitably) has been delayed by commercial
and political infighting. It is available (Siemens SINECL2 is one example)
and demonstrations linking different manufacturers’ equipment can be
seen at most automation and control exhibitions. It could, perhaps, fulfil
the role that MAP was publicized for. 

Other possible contenders are the, originally German, Profibus described
below which is again supported by several companies, and the French
FIP. Both of these are similar to, but not identical with, Fieldbus.

5.5.7 Profibus 

Profibus is one of the more common fieldbus contenders at present,
largely because it has been adopted by Siemens and many other German
electrical companies. There are three versions of Profibus designed for
three different application areas. All use token passing and are based on
the ISO/OSI model. 

The first, called Profibus-DP, for Decentralized Periphery, is by far
the commonest and is designed to link intelligent masters (e.g. a PLC),
to slave devices such as sensors, drives or actuators. Profibus only uses
levels 1 and 2 of the ISO/OSI model. Twisted pair RS485 or fibre optics
are used for transmission. 

The second, Profibus-FMS, for Field Message Specification, is designed
for the higher level with multiple masters and allowing peer to peer
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communication. Levels 1, 2 and 7 of the ISO/OSI model are used and
RS485 or fibre optics for transmission. 

Both DP and FMS share the same transmission standards and can
consequently work together on the same network. 

The final form, designed for Process Automation in hazardous areas,
is Profibus-PA which permits the construction of an intrinsically safe
network. Profibus-PA uses slightly different standards to DP and FMS,
but can be linked by a segment coupler device. 

All are linear bus systems, i.e. a straight line. Transmission speeds
from 9.6 kbit/s (up to 1200m) to 12 Mbit/s (up to 100 m) can be used.
Screened twisted pair is used, with terminating resistors at each end of
the bus. Up to 32 stations can be used in each segment, each with a
unique station address. Segments can be coupled with segment repeat-
ers, allowing a total of 127 stations to be addressed. Addresses are
assigned for global or group data reducing the number of messages and
time lag problems when data for several devices are to be changed
together. 

Connections to masters or slaves are made via standard 9-pin D-type
connectors, as shown in Figure 5.35(a). Terminating resistors are either
switched in internally at the end stations or connected inside the final
plugs. Note that the terminating resistors require power, this normally
comes from the end stations themselves. 

The manufacturer of each device on the network, e.g. a VF drive,
provides a disc file, called the GSD, which is a description of the data
exchange the device can support (e.g. accepting speed reference and run
command and providing load current and drive state, etc.) plus operating
parameters such as supported transmission speeds. Included in the GSD
file is a unique Identification Number assigned by the Profibus User
Organization. The GSD files for all the devices on the network are used
along with the station addresses to build a network description which is
held in the master.

Because Profibus DP only uses levels 1 and 2, the data exchange maps
onto pre-determined areas in the master controller (usually a PLC)
as shown in Figure 5.35(b). To change the speed of the drive, the user
simply writes the new speed into the mapped area, and the data is trans-
ferred with no further action. In a similar manner, slave data and status
is automatically read from the mapped area. A Profibus DP network is
thus totally transparent to the user.

5.6 Safety and practical considerations 
Figure 5.36 shows a fairly common situation where a switch connected
to one PLC is, via a serial link, causing a motor to run in another. Suppos-
ing the motor is started and the link is severed. The bit corresponding to
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‘motor run’ which is set inside PLCB will not be cleared by the link fail-
ure, and PLCA will be unable to stop the motor. 

When the switch is turned off, the serial link control in PLCA will
signal an error, but this is of no use to PLCB which does not know
that PLCA is trying to communicate with it. This may, or may not, be

Figure 5.35 Profibus-DP network. (a) Termination and network 
connections. Non-terminating devices only use pins 3 and 8. A 24 V DC 
supply for external devices is often provided on pins 2 (−ve) and 7 (+ve). 
Pin 1 is for the shield. (b) Memory mapping between a device and the 
master 
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a problem, depending on the application, but it is obvious that there are
implications that need to be considered. 

One approach is to define how long an output driven by the link is
allowed to be uncontrolled, say 2 s. The originating PLC then sends
a toggling signal via the link at a slightly shorter period, say 1.5 s, as in
Figure 5.37. Inside PLCB, the true and complement forms of this signal
trigger two TOFs (delay off ) set for 2 s. With the link healthy coil ener-
gized, the link-driven outputs can be energized. If the link fails, one
TOF will de-energize (and one stay energized), causing the ‘link healthy’
signal to de-energize and all link-controlled outputs to go to a safe state.

A network introduces extra delays into the system. These delays
obviously depend on the loading on the network, but are typically of
the order of 0.2–0.5 s on proprietary networks, and a bit slower on
Ethernet and MAP. 

Figure 5.36 Safety considerations with a serial link 

Figure 5.37 A way of checking a serial link
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Noise is a major source of problems, and normally manifests itself as
an increase in the delay time introduced by the network (caused by a large
number of retries). Because of checking and CRC discussed earlier,
noise rarely causes operational problems, and when it does (in really
severe cases) the effect is almost always something not working when
requested (rather than something starting unexpectedly). Noise prevents
signals getting through; it does not usually cause faulty signals to be
accepted. 

Obvious precautions against noise are separation from power cables,
and the use of conduit or trunking (mainly to identify low-signal-level
cables). Cable screens should be continuous and earthed in one, and
only one, place. Great care should be taken to prevent screens accidentally
grounding inside junction boxes. 

Most proprietary networks have monitoring facilities. Figure 5.38 shows
the diagnostics available for the Allen Bradley Data Highway Plus.
Some errors are inevitable on all systems (see Figure 5.13) and it is
worth logging the rate when a network is first commissioned. This
allows checks to be made at a later date, and any deterioration noticed
early before problems start to arise. 

Fibre optics, discussed in the next section, give almost total freedom
from interference. 

5.7 Fibre optics 
When light passes from one medium to another, the beam is bent as in
Figure 5.39(a). This is known as refraction, and is the cause of water
appearing shallower than it really is. If the angle of incidence, α, is
greater than a certain critical angle θc, the light beam does not emerge
from the surface, but is reflected internally as in Figure 5.39(b). This is
known as total internal reflection, and it can be shown that 

sin θc = 1/µ 

where µ is the refractive index for the two materials. 
In Figure 5.39(c), a small-diameter tube of glass has been constructed.

Light entering at a shallow angle will be conveyed down the tube with
little loss by repetitive total internal reflection. This principle, known as
fibre optics, is the basis of an interference-free form of data communication.

The principle is very simple. Data at the transmitter are converted
into light pulses which are conveyed down the fibre optic cable and
detected by a photosensor at the receiver. Fibre optic cable has a very
large bandwidth, so modulation or signal multiplexing allows several
high-speed serial channels to be carried down one cable. 

There are many advantages to fibre optic cables. The transmission is
totally free from problems caused by noise, crosstalk, and ground loops
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and gives total isolation between transmitter and receiver. It can also
pass through explosive atmospheres with total safety, as a cable breakage
cannot result in sparks. 

There are two basic types of fibre. Step index fibre operates as in
Figure 5.39(c), with reflections occurring at the fibre wall. Graded
index fibre has a non-uniform refractive index, causing the light beam to
follow a gentler curve as shown in Figure 5.39(d). Graded index fibres
have lower losses. 

Figure 5.38 LAN diagnostics from a programming terminal. (a) Diagnosis 
for a LAN station. (b) Diagnostic page for a MSG instruction. The destination 
station (56) has gone off line, causing a fault bit to be set at the transmitter
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The optical signal is attenuated as it passes down the cable; these
losses are usually given in dB/km (typically 5–20 dB/km). Further losses
occur at curves (the minimum bending radius is usually related to losses
rather than mechanical damage) and at the couplings at each end of the
cable. A typical link can operate for 1–2km without repeaters. 

A data transmission cable will usually consist of two fibres (one for
each direction) of 200 µm diameter loose inside a protective sheath.
Loose sheathing reduces the chance of impact damage. At each end,
the sheathing has to be removed, and protective sleeves put onto the
individual fibre optic cores as shown in Figure 5.40. 

The commonest connector is the SMA connector used in Figure 5.40.
This allows fibre optic cables to be disconnected and reconnected like
a normal signal cable. Fitting these connectors to the cable is, however,
a skilled job. The best method with least subsequent signal attenuation
is time consuming, using epoxy resin and a laborious polishing routine.
A simpler (and commoner) method uses a crimping tool and specialist
cutter. Both require the termination to be checked with a microscope
viewing a light source sent down the fibre from the other end. 

There are several disadvantages to fibre-optic-based links. The first is
that the link is strictly point to point. Topologies such as Ts, multidrops
or buses can only be achieved by the use of (expensive) repeaters at
each node. 

Fibre optic cables are also vulnerable to damage. The cable is not
only less robust than conventional cable, but it cannot be easily (or
quickly) jointed. With normal coaxial cable, a damaged length can be
quite readily cut out and a new length spliced in with through connectors

Figure 5.39 Fibre optic data transmission: (a) refraction; (b) total internal 
reflection; (c) a fibre optic cable; (d) graded index fibre 
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and little, or no, ill-effects. Through connectors are possible with fibre
optic cables, but they introduce high losses into the link and may even
prevent it from working. It is not unknown for a new run of cable to be
needed, or a repeater introduced, as a result of a single cable break. 

Figure 5.40 (a) Fibre optic cable used for communication between 
programmable controllers; (b) SMA fibre optic connector. Note the 
cable split and minimum bend radius apparent in both photographs
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Fibre optic cable should always be well protected with conduit or
robust trunking to minimize damage. Although there is no technical rea-
son why fibre optic links should not share cable tray with 33-kV cables,
it is not good practice as they will probably be damaged if any more
power cables are added. 

A final important point is safety. Most fibre optic links use high-power
optical sources, sometimes lasers. Never look down a cable ‘to see if the
transmitter is working’. If there is any doubt about cable continuity,
disconnect the cable at both ends (taking care to ensure that the right
cable has been disconnected in multicable applications) and use low-
power incandescent sources for testing. In many cases, anyway, the
source used for data transmission is outside the visible range, and cannot
be seen. It can still, however, cause damage to the eye.
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6.1 Introduction 
So far we have discussed connecting a PLC to the plant, and the ways in
which the control is achieved. A PLC also has to ‘connect’ to the human
operators, accepting commands from them and displaying the status of
the plant in a form that can readily and easily be understood. This is
known as the man–machine interface, or MMI, and can be summarized
by Figure 6.1. 

The study and design of this interface is known as ergonomics, and
tries to ensure that operators can perform their duties efficiently, in
comfort, and with minimum error. 

The most important aspect is probably the worker’s immediate
workspace and environment. Reliable error-free performance cannot
reasonably be expected from an operator who has a headache or a sore
back within an hour of starting work. Factors such as noise, dust, smell,
vibration, humidity, temperature (and temperature changes), lighting
levels (and glare) all contribute to a worker’s ability to concentrate.

Figure 6.1 The operator as part of the control loop 
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Psychological factors such as stress and the degree of concentration
needed are important, as is the ability to mentally rest and ‘coast’ for
a short period from time to time. Directive 90/270/EEC and the HSE
booklet Working with VDUs cover legislation regarding display screens. 

The layout of controls, displays and seating are important. Many
desks the author has seen have been laid out for workers 1.5 m tall with
a 3m armspan. Figure 6.2 shows comfortable working positions for
seated and standing operators, and Figure 6.3 the boundaries of human
perception. 

250

800 800

475

725
625550

(b)

Figure 6.2 Comfortable working positions
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6.2 Simple digital control and indicators 
Most of an operator’s controls will be simple digital devices such as
switches, pushbuttons, joysticks and indicator lamps. These should be
laid out within easy reach and view of the operator, as shown in Figures
6.2 and 6.3. 

The function of controls should be made as clear and instinctive as
possible. Useful techniques are grouping by function (with boundary
marks on the desk surface) or grouping by different device manufacturer
(e.g. Siemens controls on the clamp and Telemecanique controls on the
press). One of the worst desks the author has seen had 14 visually iden-
tical joysticks (but with different motion axis) arranged in a straight line
along a (single-operator) 3 m desk top. At a nuclear power station in the
USA the operators broke up a similar layout by crimping drink cans
over the joystick handles; the Coke can was the long travel, the Fanta
can the cross travel, the Pepsi can the raise lower and so on. This is
actually a sensible idea if implemented with more style! 

50°

30°

30°

Eye sweep

Head
Movement

Upper Limit

Poor colour
perception

75°

Preferred leg room and
max desk top depth 620

Desk Top
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760 max
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Clearance
640
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Poor colour perception

15°

70° 30°

25°
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1250

Figure 6.3 The seated operator and limits of perception 
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Desk layouts should be consistent, particularly where operators
change jobs at regular intervals (a good practice; it maintains interest,
prevents boredom and helps with training). On desks the author has
designed, for example, emergency stop is usually top right-hand side,
lamp test is bottom left-hand side, and fault indication/alarm is top left-
hand side. This layout is not important, but the consistency is. For the
emergency stop, the top right-hand side is most convenient for right-
handed operators, and minimizes accidental presses. 

Consistency of operation is equally important. A clockwise switch for
start in one location (the intuitive operation) and an anticlockwise
switch somewhere else is confusing. Figure 6.4 shows the expected
response for common controls. Where a control causes a plant motion
(e.g. long travel, cross travel) the controls should mimic the plant. 

Pushbutton colours aid clarity. Recommended colours (in BS-2771)
are:

Red Stop, Off, Emergency Action 
Green Start 
Black Other functions (e.g. jog, reset, test) 
Yellow Intervention (e.g. continue after a fault) 

White/grey/blue can be used for ‘other functions’, but in practical indus-
trial applications dirt degrades the colour clarity. The use of push-on/
push-off buttons should be avoided, particularly without a separate state
(run/stop) indication. 

Similar recommendations exist for the colour of indicator lamps: 

Red Fault, danger, warning, action needed 
Amber Caution, warning, operator should be aware of, deviation

from normal, overload 
Green Healthy, sequence running normally, ready 
Blue/white Informative, e.g. speed selections 

Figure 6.4 Intuitive control actions 
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A human being is very good at recognizing visual patterns, and can easily
pick out a change. In normal operation a desk should be ‘green’ with
perhaps the odd passing blue or white. 

Ambers and reds suggest that action is needed. Wherever a lamp
exists, a lamp test pushbutton should be provided. 

Illuminated pushbuttons are commonly used to reduce desk space.
The intuitive method is to press the extinguished button, which then
lights (and the other goes out) as in Figure 6.5. Running illuminated
buttons should be green (and stopped buttons red) to give the green desk.

It improves operator confidence if every action is confirmed in some
way. In many cases this confirmation is automatic when the result of an
action can be seen or heard. If there is no direct feedback (for a remote
lubrication unit, say) a confirmatory indicator (probably from an auxiliary
contact on the starter) should be provided. Operators intuitively expect
a response in a time shorter than one second, after which there is a
growing sense of unease. 

A plant should not, however, be over indicated. An operator can easily
be swamped by a visual overkill. Above all avoid multiple flashing flick-
ering lamp patterns. A flashing light demands action now and continual
presence means a serious design error. 

6.3 Numerical outputs and inputs 
6.3.1 Numerical outputs 

An operator’s desk will often have to display numerical data; hours run,
position, temperature and so on. Usually these data will be held inside
store locations in the PLC. Most digital displays operate in BCD (see
Appendix), so a four-digit display (capable of showing 0000 to 9999)

Figure 6.5 Normal action of illuminated pushbuttons. The extinguished 
button is pressed, and then lights 
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will require 16 output signals from the PLC, usually at 12 or 24V.
Figure 6.6 summarizes this operation for a PLC-5, where the number in
store location N7:40 is sent to the digital displays connected to a 16-bit
output card in slot 3 of rack 2. One small complication is that, internally,
PLCs work in binary. The output to the display is in BCD. All PLCs
capable of handling numerical data have a simple instruction to convert
from binary to BCD. For a PLC-5 (and the example of Figure 6.6(a))
this is the TOD (TO Decimal instruction) of Figure 6.6(b). 

6.3.2 Multiplexed outputs 

Figure 6.6 is a reasonable solution for one display, but one display/one
output card becomes expensive and wasteful of I/O and cable where
many displays are needed. A very economical solution is to use a multi-
plexed output. The basic idea is shown in Figure 6.7(a) for four displays
(although the idea can be extended almost indefinitely).

The digital displays have 16 data lines as before plus an additional
strobe line. If the strobe line is high, the display reads in a number from
the data lines. If the strobe is low the display memorizes (and shows) the
last data. The four displays share the same output word which cycles
through the data to be displayed. Strobe pulses are generated in the
centre of each data word as shown in Figure 6.7(b).

Figure 6.6 Driving a BCD display: (a) physical connection; (b) TOD 
(TO Decimal) instruction 
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The basis of the program to achieve this is shown in Figure 6.8.
A counter acts as the multiplexer ‘clock’ driven by pulses from else-
where in the PLC program (a GEM-80, for example, has clock flags in
the E data table). Three clock pulses are allocated per display; the first
puts the 16-bit data onto the output word, the second energizes the
strobe, and the third does nothing in the program, but has the effect of

Figure 6.7 Multiplexed displays: (a) physical connection; (b) operation
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removing the strobe whilst leaving the data on the output. (Once data
have been written to an output, they stay there until the next data are
written, whereas the coil will de-energize when its input conditions go
false.) The program segment thus causes the strobe to energize in the
centre of the data as in Figure 6.7(b). 

The one disadvantage is speed. With eight displays, 24 ‘clock’ pulses
will be needed per cycle. A typical clock pulse would be 30ms, giving
an update time of just over 0.7 s. This will normally be acceptable, the
one possible exception being where the display is used to enter numbers
from a keypad (similar to data entry on a hand-held calculator). 

The idea can be taken further, down to multiplexing individual digits.
An eight-digit display can be driven with just four data lines, three-digit
select lines and a strobe. Eight displays of this type can be driven with
just 11 bits; four data lines, three digit lines, three display select lines and
one strobe. The program, though, would be lengthy (but simple) and
the response rather slow.

Figure 6.8 Ladder program to drive the four displays of Figure 6.7. EQU 
tests for equality of the two items (e.g. the value in the Mux counter and 
a number) and Move transfers data to the output card 
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6.3.3 Leading zero suppression 

If we display 25 on a four-digit display, we want it to appear as 25 and
not 0025. This is called leading zero suppression. A digital display
driven in BCD normally uses one of the unused binary codes 1010 to
1111 to generate a blank display (usually 1111, ‘F’ in hex). Other
unused codes often show + − and a decimal point. 

We can therefore provide leading zero suppression for a four-digit
display with the three rungs of Figure 6.9. These simply detect 0, 00 or
000 and write hex F, FF or FFF (or equivalent) to the display. It is usual
not to blank the bottom digit, so 0 appears as 0. Figure 6.9 works
equally well with multiplexed displays. The ‘write F’ instruction is simply
the data OR’d with hex F000, e.g. 

Data 0000 0100 1001 0111 (0497 in BCD)
1111 0000 0000 0000 (F000 in hex)

OR 1111 0100 1001 0111 (F497 in BCD,
top digit blank)

6.3.4 Numerical inputs 

Simple digital inputs (pushbuttons, joysticks, switches) are normally
allocated one input per motion, and require nothing particularly special.

Figure 6.9 Leading zero suppression 
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A simplification is possible for multiple position selectors (an eight pos-
ition rotary switch, for example) which can use binary coded contacts;
position 6, for example, being represented by 110 on three input lines. 

Where numbers are to be entered, however, there are two basic entry
schemes. The first is BCD-coded decade switches. Each switch has 10
positions, and gives a 4-bit BCD output. To read a four-digit number
thus requires a 16-bit input card as shown in Figure 6.10. 

Where more than one value has to be entered, multiplexing can again
be used to reduce the number of inputs required. The principle, for
three four-decade switches, is shown in Figure 6.11. The diodes on each
switch output prevent sneak paths through unstrobed switches. Normally
these diodes are part of the switch construction and all the designer has
to do is specify the signal polarity. 

The multiplexing is controlled by a software counter as summarized
in Figure 6.12. As with multiplexed outputs, the major disadvantage is
a lower update speed, and a decrease in program comprehensibility. 

The techniques of multiplexing can also be used to minimize pushbutton/
switch cabling. In Figure 6.13 sixteen inputs are being read with four
outputs, four inputs and an eight-core cable. Again, diodes are needed
to prevent sneak paths. Speed of response and program comprehensibility
are disadvantages as before.

The second approach is similar to a calculator, with ten number push-
buttons, Enter and Cancel pushbuttons and a digital display (driven
as described in the previous section). The entered number is built up in

Figure 6.10 Reading decade switches 
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a buffer digit by digit by multiplying the buffer by ten and adding in
a number each time a button is pressed. Figure 6.14 summarizes the
operation. 

6.4 Alarm annunciation 
Faults inevitably occur in all plants, and as a result all bar the simplest
system will incorporate an alarm system to draw the operators’ attention
to developing problems. This alarm system can be as simple as a lamp
saying ‘Pump Tripped’ or as complex as a large SCADA system which
can generate thousands of alarm banners on computer screens.

For simple systems all that is required is a lamp for each alarm which
operates as Figure 6.15. When the alarm occurs the light flashes. When
the alarm is acknowledged (accepted) by the operator the lamp goes
solid if the alarm is still present, or goes out if the alarm was a transient
event which has passed. Normally an audible alarm is sounded until the
alarm is accepted. It is good practice to have two bulbs for each alarm
and provide a lamp test button on an alarm annunciator. 

Figure 6.11 Multiplexed reading of decade switches 
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Figure 6.12 Sample program for multiplexed input. The instruction LIM 
(for limit) checks that the value is in the range of the outer numbers. The 
top LIM, for example, gives a true output for MuxCount 0, 1 or 2 

Figure 6.13 Reading input contacts with a multiplexer 
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Alarm systems are commonly installed without much thought, and
this can cause problems. The alarm system at Three Mile Island gave
wrong information to the operators. The alarm system at Milford Haven
oil refinery produced an overkill of information which overwhelmed the
operators. During the Channel Tunnel fire, the alarm system gave the
wrong impression of the seriousness of the situation and delayed rescue

Figure 6.14 Flow chart for keypad operation 

Figure 6.15 Operation of a simple alarm annunciator. When an alarm 
occurs the lamp flashes, and an audible alarm sounds, until the operator 
accepts the alarm. This simple system, though, is vulnerable to alarm 
floods which can overwhelm the operator
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operations. At Chernobyl the alarm system itself was over-run and
alarms were being automatically removed before they were presented
to the operators.

An alarm system should make operators aware of a developing
problem in time for appropriate action to be taken, and the operators
should know what this action should be. It is worth listing the require-
ments for a good alarm system: 

The alarms should be clear, unique, concise and unambiguous.
If an alarm appears saying FT205 Low, does the operator know what
this means? The author has seen alarms where even the designers could
not explain the meaning. 

The alarms should have a defined operator response.
Every alarm should be followed by an operator action. This could be
starting another pump, putting the plant into a holding state or calling
for help from the maintenance crew. If the operator does not know what
to do the alarm is not achieving anything useful. 

Alarms should not cry wolf. 
If they do, the level of confidence in all alarms will be reduced and
possibly important alarms will be ignored. 

Alarms should be implicitly trusted. 
If they are not, the plant will run with standing alarms, a potentially
dangerous situation.

Alarms should only tell the operators what they need to know. 
If they flood the operators with irrelevant information important alarms
may be missed. For example, if an operator stops a fan this should not
trigger any alarms unless the plant responds in an unexpected way.

Alarms should only occur when the operator has time to respond. 
Giving the operator one second notice of a problem requiring deep
thought and complex action is pointless. 

One of the biggest problems with alarm system is a single problem
which can result in a deluge of alarms. In the five hours before the acci-
dent at Milford Haven oil refinery in 1994 the operators were presented
with a new alarm every two to three seconds. They barely had time to
accept the alarms let alone understand them or take appropriate action.

Alarm floods can be reduced by grouping of alarms so only first up
in a group is given. A two pump hydraulic system operating a cylinder,
for example, could have the following alarms: 

Pump Stopped 
Low Pressure 
Standby pump failed to start 
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LowLow oil level
Cylinder stroke not achieved in five seconds 

If there is an oil leak, LowLow oil level will occur, the pump will stop
automatically (to avoid pump damage), the system pressure will fall, the
standby pump will be inhibited from starting and the cylinder will not
move. One fault could thus cause five alarms. A first-up alarm system
will inhibit alarms which will naturally follow from the first event. 

Alarm floods can also be caused by repeating alarms. These are com-
monly caused by an analog signal which is just wandering either side
of an alarm trigger point These can be reduced by hysteresis with the
alarm event and alarm clear occurring at two different setting as shown
later in Figure 9.10. A simple way of achieving this is shown in Figure
9.11 in Section 9.4. An alternative approach for reducing repeating
alarms is to give the operator the ability to Shelve alarms; i.e. provide
a function which says ‘Don’t tell me about this again for (say) thirty
minutes’.

Alarms should have different priority levels. The priority will be a
function of importance and the speed with which an operator must
respond. At the highest level will be problems related to personnel
safety, followed by problems which require immediate action to avoid
expensive plant damage or extended loss of production. Lower level
alarms are less important or require less urgent action. Commonly three
alarms priority levels are used. Alarm floods can be reduced by allowing
the operator to ‘shelve’ the lower level, and hence less important,
alarms.

SCADA systems invariably include an alarm system and these
usually display alarms which appear as a banner on the screen which
must be acknowledged by the operator. It is usual to store these alarm
banners in an alarm history file which shows the time at which the alarm
occurred and the time the alarm was accepted. These alarm histories,
commonly called an Alarm Log, can be very usual for fault finding or
subsequent post mortems. They are essential if the alarm system does
have a ‘first-up’ system to filter alarms. 

Alarm systems frequently have too many alarms. Great care should
be taken to ensure that the alarms are really alarms. If a combustion air
fan trips this is almost certainly an alarm event. If the operator stops the
fan for production reasons this is probably not an alarm event. It is very
useful, both for maintenance and production, to keep a log of plant
events, but the difference between events (which should be logged
without operator action) and alarms (which require operator action)
should be clearly understood. 

Most alarm systems attract the operators’ attention with audible
alarms. These certainly demand attention but continuing alarms can be
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very stressful and can distract an operator when careful thought is
required. An alarm flood with each alarm accompanied by intrusive
sounds can be totally self defeating. If alarms can occur frequently or in
a flood the operator should be given the opportunity to mute, or at least
reduce the volume of, the alarms. Spoken alarms, commonly used on
aircraft for collision avoidance and ground warning systems, are very
effective if applied sensibly. Soft female voices suggesting the correct
action are recommended. Most modern SCADA systems permit sound
files to be attached to alarms.

Alarm duplication commonly occurs where simple lamp based alarm
annunicators are used along with banner alarms on computer or PLC
driven screens. If these are not planned with care the operator may end
up having to accept an alarm on the annunciator then accept the identical
alarm on the computer system. This wastes valuable time and increases
operator workload and stress. Even worse it can cause considerable con-
fusion if the identical alarms have different descriptions (e.g. LE205 level
on the annunciator and Imminent Sump Overflow on the computer banner).

6.5 Analog indication 
Where a PLC is concerned with analog signals, flows, temperatures,
pressures, etc. these will usually be displayed to the operator. Section 6.3
discussed the display of information with numerical digital displays.
In this section we will consider analog displays, i.e. meters and bar-
graphs.

Analog meters and digital displays can both be used to display varying
signals, so it is best first to consider their good and bad points. A digital
display can display a value to any achievable resolution and accuracy;
a four-digit display has a resolution of 0.01% of full scale. An analog
meter, however, can only be read to a resolution of about 1% of full
scale, regardless of the accuracy of the signal. If high accuracy is needed,
a digital display is best. 

An analog meter, though, is best used where an operator is required
to pick up a general pattern or impression without a great need for accur-
acy. Digital meters need to be read individually. The rogue temperature
on the bar graphs of Figure 6.16 can be seen instantly; the same data on
digital displays are far less obvious.

Another consideration is the speed of change of signal. Digital dis-
plays need time for the human mind to assimilate the information. With
fast-changing data on a four-digit display, all the eye sees is 8888. In
situations where the operator is required to handle fast-changing signals,
an analog meter is preferred. 

There are also implications for the cost of the system and the ease of
maintenance, which will depend on the specific application. A three-digit

075065757X-ch006.fm  Page 247  Wednesday, July 9, 2003  4:57 PM



248 Programmable Controllers

digital display requires around 14 signal lines, plus a supply. An analog
meter requires just two (but needs one output from a relatively expensive
analog output card). Digital meters have no moving parts whereas
analog meters are less robust and can be damaged by sharp blows. 

A meter scale should be chosen to be easy to read at the normal
viewing distance. A useful rule of thumb is a scale length about 1/15th
of the viewing distance (e.g. 20 cm scale length for a 3 m viewing
distance). Figure 6.17 shows different meters with identical scale length.
Normally 20 scale divisions are used. With a correct choice of viewing
distance/scale length, an observer can interpolate to one-fifth of a scale

Figure 6.16 The same data displayed in analog and digital forms: 
(a) analog; (b) digital 

Figure 6.17 Different meter scales, all having equal scale length: (a) linear; 
(b) 100°; (c) 270°
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division to give a resolution of 1%. Perhaps surprisingly, more than
20 scale divisions can decrease the resolution by making the scale look
cluttered and difficult to read. Figure 6.18 shows typical scales readable
to 1%. Meters to higher accuracy are available (BS89 defines nine accur-
acy ranges from 0.05% to 5%), but they have little practical application
in industry. 

Meter ranges should be chosen so that a normal reading is between
40% and 60% of full scale. If a block of meters is to be quickly scanned
for an anomalous reading, the ‘normal’ value should be at 9 o’clock for
a horizontal row of meters, or at 12 o’clock for a vertical column, as
shown in Figure 6.19. 

Where a signal (shown on a meter) is to be controlled, it is important
to have the correct link between the signal movement on the meter and
the operator’s expectation. Everyone expects ‘increase’ to equate to ‘up’
or ‘clockwise’, giving the relationships of Figure 6.20. 

Figure 6.18 Scale markings readable to about 1% resolution 

Figure 6.19 Grouping of meters which are scanned for deviations 
rather than precisely. Normal indication arranged as shown
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6.6 Computer graphics 
6.6.1 Introduction 

So far we have discussed individual operator devices, pushbuttons,
switches, indicators, analog meters and digital displays. Increasingly
all of these functions are being provided by computer graphics screens.
This can be a display device designed specifically for a particular range
of PLCs (the Allen Bradley Panelview and the CEGELEC Imagem
which we will discuss in the following section are of this type), general
purpose graphic display devices (such as ABB/ASEA’s excellent
Tesselator) or graphics software running on conventional industrial
computers. 

It is useful, as ever, to first consider the merits and disadvantages of
using computer displays. If everyone was totally honest, often the main
reason for the choice is that they look good and impress visitors. Too
often the result is stunning colourful flashy graphics that are impossible
to view for more than a few minutes without acquiring a headache,
have to be searched for useful information and have an update speed of
several seconds. At my site several plants are controlled by screen, and
there are usually spectacular ‘visitor’s screens’ and more mundane,
restful (and useful) working screens. 

Figure 6.20 Human expectations of controls and indications. Arrows 
show direction for increase (of flow, power, speed, temperature, etc.). 
It is odd to note that UK light and power outlet switches are reversed 
from normal expectations. Controls relating to motions (e.g. crane 
controls) should follow plant movement 
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The major advantages are simplicity of installation and flexibility.
A graphics terminal has just two connections to the outside world,
a serial link connection (see Chapter 5) and a power supply. If it is used
to replace a desk full of switches and indicators there are obvious cost
savings. A good quality switch occupying about 60 × 40 mm of desk
space costs about £20 at the time of writing, to which must be added
1/16th of the cost of an input card, a share of a PLC rack, about three
connectors, one core in a multicore cable plus labour for building the
desk and PLC cubicle, pulling the cable, and ferrulling the cable cores.
A single device can be very expensive when all the costs are considered.
There are software costs and a large capital cost for a graphics terminal,
but these generally work out significantly cheaper. 

The designer of desks or control stations often has to deal with
changes and modification (another example of the ‘didn’t we tell you’
syndrome which usually manifests itself as a retrofitted 30-mm push-
button with dymotape label in a desk originally fitted with 20-mm
controls). Constructing a desk is always a fine balance of time, choosing
between waiting until all the requirements are clear, and the minimum
time needed to make it. Modifications at the commissioning stage rarely
look neat. 

The displays on a graphics terminal can be modified relatively easily,
and, more importantly, the modifications leave no scars. If the design of
a normal desk can only start when the desk contents are 95% finalized
(which is about right) a graphics screen can be started at 75% finalized.
This flexibility is of great assistance as no job is ever right first time. 

There are disadvantages, though. The most important of these is the
limited amount of information that can be displayed on a single screen.
It is very easy to overcrowd a screen (giving a screen similar to a page
full of text on a word processor), making it difficult for the operator to
identify critical items. A useful rule of thumb is not to use more than
25–30% of the screen. For a typical 80× 25-character screen this means
about 500 available positions, which include both identifying text and
data. ‘Motor Speed NNNrpm’, for example, uses 16 characters. 

The effect of this is often a need to build up a hierarchy of screens,
the top screen showing an overview, lower screens showing more and
more detail. The problem with this is the time delay needed to shift
through the screens. Direct screen to screen movement is possible by
calling for a page number (which needs a good human operator memory,
or a directory piece of paper, or wasted screen space) or by making all
screen changes via an intermediate directory page (with additional
delay). These time delays are small (less than a second typically) but the
cumulative annoyance is large. 

The time taken to update screen data can also be problematical, par-
ticularly where a machine to machine link is involved. Again a response

075065757X-ch006.fm  Page 251  Wednesday, July 9, 2003  4:57 PM



252 Programmable Controllers

time of around one second is typical, but several seconds is by no means
uncommon. The use of a graphics terminal for fault finding on a fast-
moving plant is not really feasible. 

There are generally two types of graphics terminal. The simplest,
known as block graphics, has one store location for each character pos-
ition on the screen. An 80× 25-character display will thus have 2000
store locations. Each location will commonly have two bytes (one 16-bit
word) arranged as in Figure 6.21. The first of these holds the character
to be displayed, a single byte giving 256 possibilities. Standard ASCII
(see Table 5.1) provides 128 alphanumeric characters, the other 128
being assigned to useful semigraphics characters. Figure 6.24 shows
some of the block graphic symbols available on IBM PC clones, and the
Allen Bradley Panelview. The second byte determines the colour, using
3 bits for foreground colour (giving eight colours) and 3 bits for back-
ground colour (again 3 bits), leaving 2 bits for functions such as flash,
double height or bright/dim. 

The second type of display deals not with individual characters, but
with individual points on the screen called ‘pixels’. Characters are built
from pixels, typically 8 wide by 14 high (for EGA on an IBM-PC, giving
a total of 112 pixels per character), the pattern for each character being
stored in a read only memory (ROM) as in Figure 6.22.

Figure 6.21 Block graphic memory allocation 
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A typical medium-resolution screen will have 640 (horizontal) by 350
(vertical) pixels, a total of 224000 points. High-resolution screens for
computer aided design (CAD) use even more pixels. Each of these can
be accessed individually, allowing lines to be drawn at any angle, fill
patterns of any type to be used and trend graphs of plant variables to be
displayed. Each individual pixel can have its own colour (from over 256
possible colours in some displays) and intensity. The result is an almost
photographic resolution. 

There are additional costs, the most obvious of which is a large store
requirement. The system hardware and software are more complex
(and hence more expensive) but, perhaps surprisingly, this is not appar-
ent to the user; pixel graphics displays are often easier to program than
block graphics units. Recent home computers (from the era of the BBC
and the Spectrum) have all used pixel graphics. 

The next two subsections look at examples of block graphics and
pixel graphic displays. The first example (the Allen Bradley Panelview)
is a relatively simple block graphics display designed to replace simple
desk controls (pushbutton, indicators, bar graphs, digital displays and
simple mimics). The second, the GEM-80 Imagem, is a more sophisticated
display system using pixel graphics and a powerful graphics language.

All PLC manufacturers have graphics packages, usually both block
and pixel. Allen Bradley, for example, have the pixel-based Controlview,
and the GEM-80 has a simple block graphics video processor. Siemens
have the SCADIX family, ABB the Tesselator, and so on. There are
differences in the progamming methods used by each (although the
basic ideas are similar). To cover all would be time consuming, tedious
and confusing. The two examples below were therefore chosen from

Figure 6.22 Generating block graphics 
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equipment I have ready access to, not by way of any recommendation
over other manufacturers. 

6.6.2 The Allen Bradley Panelview

The Allen Bradley Panelview family shown in Figure 6.23 is designed
to replace switches, pushbuttons, numeric displays and similar devices.
It is available in keypad or touchscreen versions, with both having
monochrome or colour displays. In the keypad version, operator actions
are linked to function keys, in the touch screen version 120 touch cells
are available. 

All Panelviews use a VGA screen with 640 × 480 resolution which
can display full uppercase/lowercase alphanumerics (for normal text)

Figure 6.23 Members of the Panelview family. Picture courtesy of 
Rockwell Automation
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plus built in ISA (Instrument Society of America) symbols for motors,
pumps, etc. Bitmaps can also be imported to provide user designed
graphic symbols or backgrounds. 

The unit can have several ‘pages’ of displays, the limit (set by the
memory) is around 40 pages of reasonable complexity. These are pro-
grammed with a standard IBM PC clone. 

Any display contains two distinct types of object. Static objects are
fixed and do not change. These are used for fixed text, fixed titles, and
unchanging graphics. More interesting are dynamic objects. These are
linked to inputs, outputs and numerical data in the controlling PLC. 

Panelviews use various forms of serial communication to link to the
PLC, including DeviceNet, ControlNet, Data Highway and RS485.
The version we shall discuss as an example in this section connects to
the PLC via the normal remote I/O cable and looks, to the PLC, like
one rack of standard I/O cards. The form of communication and the
rack number is part of the initial configuration of the Panelview. An
indicator on a Panelview screen, say, could be allocated to bit 3 of card
5 in rack 7, and be driven by address 0:75/03 in the PLC program.
Similarly a button on the screen could be assigned to bit 14 of card 2
also in rack 7 and read by the program as I:73/14.

Dynamic objects are added by selection from pulldown menus. These
include:

Displays to the operator: 
Multistate indicator (Running, Stopped, Tripped, Isolated, Fault, etc.)
Numeric Displays with fixed or floating decimal point (Tank Contents

4057 litres) 
Bar graphs and scales (vertical or horizontal) 
Circular meters and scales 
Alarm messages (appearing as windows and can be stored on an alarm

history page)
Message displays (predefined messages with stored ASCII strings

such as ‘Drill Sequence now completed ’). These strings can also include
embedded data from the PLC (‘Warning: motor current is NNN amps’).

Data inputs from the operator:
Pushbuttons. A selection of five different types, including normally

open, normally closed, latched, maintained and interlocked (select one
and only one from a group). Pushbuttons can control a single bit or
write a numeric value to a PLC. A pushbutton also includes a two state
indicator whose message can be controlled by a PLC output. 

Numeric input, either from pushbuttons or a pop-up keypad
List Selector, used to select one, from several, control options (e.g.

calibrate, test, run, shutdown) 
Control functions such as select a different screen or accept an alarm.
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Panelview screens are built using the Panelbuilder software running on
a normal PC screens. Figure 6.24 shows the steps used to add a push-
button to a screen.

Figure 6.24(a) shows a summary of the Panelview contents on the left-
hand side. The Panelview screen Timed Cut has been selected followed
by the pull down menu for objects and selection of Pushbuttons. Clicking
on Momentary bring up a pushbutton which is placed and sized on the
screen with the mouse as Figure 6.24(b).

The button must now be configured. Double clicking on the button
brings up the window shown in Figure 6.24(c). The button has been
selected to be a single bit, buttons can also be configured to write
a value to the PLC. 

A button has two links to the PLC; an input where its action will be
performed and an output used to control the state (e.g. Running/
Stopped) on the button display. The links are done by tags. These are text
descriptions of the link. The new pushbutton is an alarm accept button,
and the two links are Reset_PB (for the input) and Alarm_Present (for
the output). These tags can be defined in advance (which is quickest
when starting a project from scratch) or defined as each object is added.
Selecting a tag, Reset_PB say, and clicking the Edit Tag button brings up
the Tag form of Figure 6.24(d). Here the data type (bit) and the destina-
tion address (I:12/03) are entered. The Node Name is the PLC to which
this Tag applies. For the simple Remote I/O there can be only one PLC,
but Panelviews with Peer to Peer links such as Data Highway can
exchange data with many PLCs. Node then defines the PLC to which
the tag applies. The initial value defines the data sent to the PLC on
Panelview power-up. When all data has been entered the OK button is
clicked. The Alarm_Present output tag is entered in a similar way. 

Next the states of the button display must be defined. Clicking on
States on Figure 6.24(c) brings up the state window of Figure 6.24(e).
The button should be invisible when there are no alarms, and appear
when there are alarms. Foreground and background colours can be
defined for the text and the object itself. State 0 (healthy) thus has all
foreground and background colours set to black and no text. State 1 has
the text Alarm Accept (with /*R*/ denoting a new line). Colours can be
defined with pull-down menus as shown or by clicking with left or right
mouse buttons on the colour pallets visible on Figure 6.24(b). Font size
and aligment controls can also be seen on this figure. 

Figure 6.25 shows a typical complete Panelview screen.

6.6.3 Pixel graphics; the CEGELEC Imagem 

The Panelview built up a graphics screen with semigraphic characters
placed on a screen with a ‘pick and place’ menu approach. The GEM-80
Imagem is a true pixel graphics system where the programmer has
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Figure 6.24 Adding a pushbutton to a Panelview screen: (a) selection of 
Pushbutton from the Object pulldown menu; (b) pushbutton positioned 
on screen and sized to suit
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Figure 6.24 (cont.) (c) pushbutton type and tag names defined, one tag 
for the input and one for the display; (d) definition of one tag linking name 
to a PLC address
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Figure 6.24 (cont.) (e) text entry and colour selection for the display states

Figure 6.25 Typical Panelview screen. Picture courtesy of Rockwell 
Automation
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access to every individual pixel on the screen. It should, perhaps, be
noted at this point that Allen Bradley have a pixel graphics system
(called Controlview) and Siemens the SCADIX graphics video processor.
Most PLC manufacturers have both types. 

The display area on an Imagem screen consists of over a quarter of
a million pixels arranged 560 pixels wide and 448 pixels high. A point
on the screen is defined by an X and Y coordinate arranged as shown in
Figure 6.26 with point (0,0) arranged at the bottom left-hand side. (IBM-PC
clones have an awkward system with 0,0 at top left.)

On any screen the programmer can use a palette of 16 colours. These
are 16 genuine colours which can be chosen from a palette of 4096 colours
and the tints can be changed by variables in the PLC program.

Pixel graphics are more powerful than block graphics, and this means
that the programming is more involved to use the additional features.
The Imagem uses a display language which has features common to the
graphics command on a good quality desktop computer (move, draw, etc.)
and mathematical functions for graphical construction involving trig-
onometry. The programming function CONSTRUCT is also provided,
allowing the routine for drawing a valve, or a conveyor, or a hopper to
be defined once and then called by a name (such as VALVE). Characters
are based on the ASCII set (see Table 5.1) with 128 undefined characters.
These can all be redefined with a character editor to produce any
desired symbols. Characters can be drawn in any size (with different
magnification in the X and Y direction). 

In the rest of this section we will look at some of the features of the
Imagem display language. In the space available this can be little more
than an overview (the Imagem Programming Manual has over 200
pages) but should give an appreciation of the approach used with pixel
graphics systems. 

The display language is closely related to high level languages such as
BASIC or Pascal. For example, to put a simple message on the screen
you would write 

Figure 6.26 Imagem display area
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FOREGROUND WHITE 
BACKGROUND BLUE 
WINDOW 0,0 559,447 
MOVE 205,210 
SIZE 2 
‘Have a Nice Day’ 

Here the colours are defined by the FOREGROUND and BACK-
GROUND commands, the WINDOW command says the area this
definition applies over (the whole screen), the MOVE command places
the cursor at X = 205, Y = 210 (near the screen centre) and SIZE 2 gives
double height text. 

Data in the PLC program can be added to text. Assuming colours
and size and position (MOVE) have been set up we can write 

‘Feed Rate = ’ 
DECIMAL ^##.##,W[235] 
‘l/min’ 
NEWLINE 
‘Tank Level = ’
DECIMAL ^^#.#,W[236] 
‘metres’

Here the PLC program is accessed for the values to be displayed. The
feed rate is held in the GEM location [235] and the tank level in location
[236] (see Section 2.3.4 for a description of the GEM-80 data table). The
DECIMAL command says how this is to be displayed, defining both
the number of characters and the decimal point position. The caret ^ is
a blank position and the hash # a number. The above instructions
could produce: 

Feed Rate = 15.25 L/min 
Tank Level = 3.7 metres 
Mathematical functions can also be included, for example: 
‘Total Water Flow = ’
DECIMAL, ^####,G[17] + 10*G[23] + W[146]/2 
‘gpm’

We set the foreground and background colour earlier with default
colours. The programmer can define a colour (up to a palette of 16 on
any one screen) and even have colours varied by PLC variables. A col-
our has a name, and, in its simplest form, percentages 0–100% of the
component colours red, green and blue. You could define, for example,

COLOUR PINK 80,10,20

or a colour controlled by plant variables 
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COLOUR PWRLEVEL G[10],G[11],G[12] 

With the latter, a definition FOREGROUND PWRLEVEL will cause
text (or graphics) to the next foreground definition to be set by the values
in the variables G[10] to G[12]. 

Flashing characters have a larger definition with main colours (RGB)
followed by on time (in tenths of a second) followed by inverse colours
(RGB) and off time (again in tenths of a second), for example 

COLOUR ALARM 100,0,0,4;50,0,0,2 

which goes from bright red to dim red. 
Symbols and mimics are drawn with lines, arcs and filled blocks.

A line is drawn with the command DRAW X,Y which draws a line
from the current cursor position to position X,Y. The instruction 

MOVE 100,100 
DRAW 200,200 

would thus produce Figure 6.27(a) and 

MOVE 100,100 
DRAW 200,200 
DRAW 300,100 
DRAW 100,100 

would give Figure 6.27(b). 
These have defined positions in absolute screen positions. It is often

useful to use relative positions, particularly when the graphics involve
variables. Relative commands are RMOVE and RDRAW. Figure 6.27(b)
could also be produced by 

Figure 6.27 The DRAW instruction: (a) simple line; (b) a triangle 
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MOVE 100,100 
RDRAW 100,100 
RDRAW 100, -100 
RDRAW -200,0 

The line width can be set with a size command; SIZE 5 gives lines 5 pixels
wide. The line type (dotted, dashes, etc.) can be defined with a suffix;
for example 

DRAW 157,203,3 

gives a dotted line (denoted by suffix 3) to position 157,203. 
The draw commands can be related to a value in a PLC data table

location. For example, to draw a bar graph we would write 

SIZE 7 
MOVE 0,400 
DRAW W[62],400 
MOVE 20,20 
DRAW 20,W[45]/62.5+15 

This would draw two bar graphs; one horizontal directly linked to
W[62] and a vertical one determined by a bit of maths on the contents
of W[45].

A block of bar graphs can be drawn by using the FOR command.
This operates like a FOR/NEXT loop in BASIC, or the FOR/BEGIN/
END construct in Pascal. The form is very similar to Pascal, in fact,
with open brackets ‘(’ being used for begin and close brackets ‘)’ for end.
For example 

SIZE 7 
FOR A=1 TO 10 
(MOVE 20*A,20 
DRAW 20*A,W[15+A]) 

draws ten vertical bar graphs for the values in W[16], W[17], etc. to
W[25]. Here ‘A’ is an internal Imagem variable. 

At this point you might be confused about how graphics controlled
by plant variables can be changed without erasing the old values or
causing annoying flicker. The principle is shown in Figure 6.28. The
Imagem has two screens; let us call them A and B. When screen A is
being displayed, screen B is updated in the background from the pro-
gram. When this update is complete, the screens are switched, B being
displayed and A updated. This toggling is invisible to the user, but gives
very smooth updates. It allows an analog meter pointer to be simulated
with
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MOVE 200,200 
DRAW 50*COS[90*W[127]/1500],50*SIN[90*W[127]/1500] 

which draws a line 50 pixels long from 200,200 at an angle determined
by the value in W[127] with 90 degrees corresponding to a value of 1500.

Arcs can be drawn with a VIA command 

MOVE 100,100 
DRAW 300,100 VIA 200,200 

gives Figure 6.29(a), and 

MOVE 100,100 
DRAW 100,100 VIA 300,100 

gives a circle as in Figure 6.29(b). 
Predefined words are provided for a triangle 

Figure 6.28 Screen updating on Imagem 

Figure 6.29 The VIA instruction: (a) arc; (b) circle 
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TRIANGLE Xl,Yl,X2,Y2,X3,Y3 

and a rectangle 

RECTANGLE X1,Yl,X2,Y2 

where the points define opposite corners. A suffix defines the line type
(solid, dashed) as described for the DRAW command. The programmer
can define a shape, a conveyor, say, and repeat it with 

CALL CONVEYOR (parameter list, e.g. size, position, state) 

Solid shapes can be produced by moving inside a CLOSED shape and
using the command FILL. 

Conditional tests are often needed to show the plant state; alarm
conditions or running/stopped are common examples. These are pro-
vided by the IF/THEN/ELSE command which, in its simplest form, can
change a colour: 

MOVE 50,450 
IF A[14].3 THEN 

FOREGROUND GREEN 
(‘Running’) 
ELSE (FOREGROUND RED
‘Stopped’)

where the plant I/O signal A[14].3 changes the message, and colour,
on the screen. 

So far we have discussed just one screen. Obviously, to be useful,
a graphics system must be capable of displaying several screens, and
having some method of changing between screens in a controlled
manner. The screens constructed above (the GEM calls them Formats’)
are edited and stored in a memory card which is accessible to the GEM-80
and one (or more) Imagem processors. An Imagem can display up to
four formats (or screens) at any time (the effect is similar to windows on
an IBM-PC clone). The controlling GEM-80 has an L table in its data
table in which each Imagem has four locations, the first, not surprisingly,
having L0, Ll, L2, L3. Into these are written the format numbers that
are to be displayed. For simple, non-overlapping screens only one of the
four will be used, and the others will contain zero. Figure 6.30 shows
typical Imagem screens. 

6.6.4 The Siemens Simatic HMI family 

Siemens provide a vast range of operator terminals from simple text
only message displays to complete computer based Scada systems.
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Figure 6.30 GEM-80 Imagem Trend and Bargraph screens (Courtesy of 
CEGELEC) 
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Typical members of the family are shown in Figure 6.31. Based on Win-
dows ME they communicate with the controlling PLCs via Profibus DP
(see Section 5.5.7) and other common serial communication standards.

The terminals are configured using the Siemens ProTool software
shown on Figure 6.32. Here a trend chart is being added to a touchscreen
TP170B terminal. 

Screen based operator interfaces are becoming increasingly common,
and the Siemens C7 device deserves particular mention. Rather than
have a separate PLC and operator terminal this combines the two in
one device. The C7 is the plant display screen AND the plant PLC.
It uses the Siemens S7 standard PLC software for control and the
ProTool software for screen configuration. 

6.6.5 Practical considerations 

One major advantage of graphical displays is that mistakes can be
rectified without leaving scars, albeit at some cost. None the less it is far
better not to make mistakes in the first place. Perhaps the most important
consideration is to realize that the system is being designed for an operator

Figure 6.31 Some members of the Siemens HMI family
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who will be sitting in front of it for about eight hours a day, and not for
the managing director and visitors. By all means include impressive ‘vis-
itor’s screens’, but remember the poor operator. Above all, remember
that you are not designing a video game. 

A typical mistake is overuse of flashing displays (and flashing lights
on desks). A video display (or a desk) in normal operating conditions
should not flash or blink. Flashing should only be used to attract an
operator’s attention (an unaccepted alarm, for example) and should go
steady when the operator acts. On a screen, a flashing small box
alongside fixed text is much more friendly and easier to assimilate than
flashing text. Text flashing in varying intensity (bright to dim) is better
than text on/off and avoid text and background switching colours,
which is almost impossible to read. 

Another common problem is screens which SHOUT AT YOU IN
UPPER CASE all the time. Only Death in the Discworld novels SPEAKS
IN UPPER CASE. Text in lowercase is much easier to read. The use of
Capital Letters for the first Letter of each Noun or Verb also makes
interpretation easier. Look how the text on road signs is displayed.
All modern screens can support upper case and lower case. Careful use

Figure 6.32 Adding and configuring a trend chart on a TP170B using 
ProTool software
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of initial capital letters can be used to emphasize text and draw the
operator’s attention. Think about layout. 

Screens should be uncluttered and consistent. The 25–35% usage rule
is a good starting point as it allows an operator to quickly scan a screen
for relevant information. Consistency ensures that similar operations
are performed in similar ways, with colours having the same meaning
on different screens. Pumps should not, for example, be run with separate
start/stop pushbuttons on one screen, and with push on/push off single
buttons on another. If an ‘End of Travel’ limit switch is yellow on one
screen, it should be yellow on all (and not red, green or blue). Consistency
problems normally arise where more than one person has been involved,
and can generally be overcome by laying down standards at the start of
a project. 

Bright colours (yellow/white) tire the eye, and should not be used in
large areas (and should be avoided for background colours). Overuse
will cause the operator to turn the brilliance down, possibly losing
information in dark colours as a result. Grey is a much more restful
background colour. Blue characters on a black background are par-
ticularly vulnerable to vanishing if the contrast or brilliance is turned
down.

Good colour combinations are black on green, black on yellow, black
on red, red on white, blue on white, green on white, red on black, green
on black and white on blue (the latter is very good for large areas of text
and is often used for word processors). 

Colour combinations to avoid are yellow/green and yellow/white
(which merge together) and blue on black for fine detail (the visibility is
very dependent on the setting of the contrast and brilliance control).
Cyan/blue is also poor to the point of vanishing into an unreadable
bluish block. 

With touchscreens, a useful standard is colour on black for an unac-
tivated pushbutton, and black on the colour for an activated state.
With start and stop buttons, for example, in the stopped state the start
button would show ‘Start’ in green on black, and the stop button show
‘Stopped’ in black on red. When the start button is pressed, it changes
to ‘Running’ in black on green, whilst the stop button changes to
‘Stop’ in red on black. Note the text changes from allowed action to
state. 

The environment around a display needs to be carefully considered.
Most screens are mounted angled up, and are prone to annoying reflec-
tions from overhead lights and windows. Bright lighting (and above all
direct sunlight) can make a display impossible to read. 

Displays are also adversely affected by magnetic fields. Close proximity
to electric motors, transformers or high-current cables will cause a picture
to wobble and the colours to change. The effect can be overcome by

075065757X-ch006.fm  Page 269  Wednesday, July 9, 2003  4:57 PM



270 Programmable Controllers

screening the monitor with a mu-metal cage (normal steel or iron does
not work). 

The size and weight of the monitors are often overlooked, making
them difficult to mount neatly, and even more difficult to change. Access
should be made as easy as possible; trying to hold a 25-kg display in
place with one hand whilst undoing interminably long mounting screws
is not much fun. 

Displays fail, and the implication of this needs to be considered in the
design. If all the plant control is performed by screens, what will happen
during the ten or so minutes it will take to locate a spare and change the
faulty unit? Often, dual displays (main and standby) are used to over-
come this problem. 

6.6.6 Data entry 

The operator will obviously need to input data and initiate actions.
Keyboards are one approach, but many people are nervous of them
(home computers help here) and the cable connecting the keyboard
always seems prone to damage. In dirty environments keys can become
blocked with dirt and membrane keypads with tactile (feel) feedback
should be used. 

Another useful approach is softkeys. Here a set of buttons (often 10)
is positioned on the keyboard below a set of (software-driven) blocks on
the screen. The pushbutton can thus change their meaning as the screen
changes, as shown in Figure 6.31. 

If the operator has to access points anywhere on the screen, a tracker
ball is a useful device. Rather like an upside-down mouse it controls the
movement of a cursor on the screen. All normal actions can be per-
formed with three buttons on the trackerball and a numerical keypad.
Trackerballs work surprisingly well in dirty environments as they are
open underneath and dirt seems to fall straight through. Mice perform
a similar function but are vulnerable to damage and dirt and are hence
more suited to an office environment. 

Touchscreens have already been mentioned briefly. Combining a
display area with operator controls they provide a very compact inter-
face, but their use should be tempered with care. There is absolutely no
tactile feedback for the operator to sense a button, so their use is not
recommended for an application where the operator has to look at the
plant (and not the screen) when operating controls. 

It is also easy to operate buttons by mistake. A similar effect can
occur when a touchscreen is cleaned; a blank screen should always be
provided for this purpose. The continued touching of the screen leads
to a build-up of greasy fingermarks, accentuating this problem. 
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6.7 Message displays 
Where a simple text message is to be displayed, possibly with embedded
data, message displays driven by a simple serial link carrying ASCII
coded characters can be used. The controlling PLC simply stores an
ASCII string in its memory and outputs it, with added variable data, via
a device such as the ASCII module described in Section 5.2.8. An alter-
native approach is to store precoded messages in the display itself,
with the PLC having a few parallel lines allowing it to say ‘Display
message 23’.

6.8 SCADA packages 
PCs have much better graphics capability than the average PLC, so it is
not surprising that PCs are increasingly being used as the link between
humans and PLC systems. These are usually called SCADA systems
(for Supervisory Control and Data Acquisition). As the name implies
these act as a higher level supervisor, and are commonly used for deter-
mining plant set-ups and displaying plant status on high quality screens.
They also provide storage for several days performance records allowing
problems to be investigated after the event. 

Other common features are trending (producing time based historical
graphs of plant data) and alarm annunciation. The use of the latter fea-
ture needs some care. The ease of adding alarms into a SCADA system
can lead to a large number of alarms which can swamp the operator and
be ignored. An alarm overkill is thought to have been a major contribu-
tory factor in the explosion at Milford Haven oil refinery in 1994 when
the operators were exposed for several hours to alarm messages at the
rate of over thirty per minute. SCADA systems are vulnerable to this
problem, but any alarm system should have priority groups and some
form of first-up system which blocks consequential alarms. The topic of
alarm annunciation is discussed further in Section 6.4. 

The security of the system should also be considered. If a SCADA
system fails, what controls will be needed during the thirty or so minutes
that it will take to change for a spare, can the plant run blind for this
time, or should there always be a second, standby system? 

Figure 6.33 shows a typical high quality SCADA display built on the
popular Citect package. This consists of many objects which are linked
to data inside a PLC. The operation, like the Panelview described
in Section 6.6.2, is built around ‘Tags’. These can be considered as a
database of plant information which is built by the PLC. Definition
and construction of the Tag database is the main part of the work in
building a SCADA system; the construction of the screens is pure
undiluted fun!
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Figure 6.34 shows two typical tags. The first is a digital signal saying
a pump is running. The Field I/O Device Name defines the PLC from
which this signal can be obtained. Elsewhere the communication
method (e.g. Ethernet) for obtaining data from this PLC has been
defined. The address, bit 8 of word N70:0, defines from where the data
can be read. If this is true, Pump 1 contactor is energized, and this
information can be used on a screen to, say, turn the colour of a graphic
symbol for a pump to green. 

The second tag, on Figure 6.34b, is numeric and gives a temperature.
This is obtained from the PLC known as Env_C_Pulpit. Scaling can be
performed on numeric values, in this case 0–1000 corresponds to a
temperature of 0–100.0 °C. Engineering units (e.g. psi, °C) can be
permanently attached to the value and a fixed format (e.g. ##.#) can be
defined but they have not been used in this example. 

Once the tags have been defined they can be used on the display.
Objects are selected in a way similar to most paint packages. Each
object has a vast array of parameters which can be linked to the tags.
Figure 6.35 shows a very simple example for a text object. Here there
are two limit switches saying a damper is in the open or closed

Figure 6.33 Typical SCADA display built using Citect. Every object on 
the screen can be linked to PLC data 
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position. Figure 6.35a shows the text associated with these limits.
If only one is present the text gives the state. If neither is present,
during movement for example, ???? is displayed. If both are present
there is a fault.

Figure 6.35b sets the colour of the text for each of the four possible
states. Legitimate states (open/closed) are Green, the transitional state is
Yellow and the fault state is Red. Note, though, the other tabs around
the object for other functions that could be applied. The range of possi-
bilities is vast. 

Trending is one of the strengths of SCADA systems. Any tagged
variable can be trended, and custom displays can be built by operators.
Range in the Y direction and time-base in the X direction can be

Figure 6.34 Tag definition on a SCADA system. A consistent method 
of defining tags must be used. (a) Digital (On/Off) tag. Note the tag 
name starts d for digital; (b) Integer tag, again note the tag name 
starts i for integer
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Figure 6.35 Definition of properties for an object: (a) text definition for a 
simple text object; (b) colour definition for a text object
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selected and changed, to aid fault finding for example. Figure 6.36
shows a typical trend display used, in this example, for statistical
process control (SPC). Note the scrolling, zooming and scaling controls
on the screen.

Figure 6.36 Trending on a Scada system, in this case for a statistical 
process control (SPC) system showing the variation of crucial plant 
signals. Figure courtesy of Citect
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7 Industrial control with 
conventional computers

7.1 Introduction 
The vast majority of this book has been concerned with computer
control based on programmable controllers. In this chapter we will
look at how conventional computers can fulfil a similar role. The idea
of a control hierarchy was introduced in Section 5.3.5, and a typical
layout was shown in Figure 5.28(a). Here the top level 3 is the company
mainframe(s) used for accounting, reports and management. Level 2
is based on powerful minicomputers such as the DEC-VAX and
11/73s. These are concerned with scheduling, report generation based
on plant events and data collection. The bottom level 1 is directly
connected to the plant and performs real time control. PLCs operate at
this level, and we will consider how general purpose computers can
operate at this level, often in conjunction with PLCs. 

We have seen how powerful PLCs are, so an obvious question is
why use a computer at all. The main advantage is brute mathematical
computing power, high speed and ease of connection to printers,
keyboards and the like. Usually the programs require specialist
knowledge to change. This can be an advantage or a disadvantage
depending on the application. A PLC program is easy to understand
and easy to modify. It can be quite difficult for engineering management to
control and keep track of program changes. 

All PLCs have some form of access control via keys and password, but
these are actually little protection. Access has to be provided for main-
tenance staff, who must be in possession of keys or password. Inevitably
there will be ‘midnight programmers’. A computer with a program
written in ‘C’ which is compiled and stored in ROM is as secure as a
bank vault. If an application has few real I/O, needs a lot of mathematical
operations, is unlikely to change, or has a need for several printers or
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graphics monitors, or security is important, a conventional computer
may be a sensible choice. 

To some extent these features can be provided by specialist modules
which can be added to PLCs. Allen Bradley, for example, have a
BASIC module (1771-DB) which can be added to a PLC-5 system. This
is a small computer which can be programmed in BASIC and can
communicate with peripherals (graphics terminals, keyboards, printers,
etc.) via RS232 ports, and with data in the PLC via block transfer reads
and writes (described in Section 4.4.5). Figure 7.1 shows an example
where a mathematical operation is passed to the BASIC module (which
acts rather like a maths co-processor). Another common application is to
produce printed reports in the absence of a higher level computer. 

In general, computers at this level fall into two categories: bus-based
systems and industrialized clones of the ubiquitous IBM PC family. The
rest of this chapter briefly describes industrial computers belonging to
these classes. More detailed information is given in Bus Based Industrial
Process Control, and PC Based Instrumentation and Control. Both books are by
M. Tooley and are published by Butterworth-Heinemann. 

7.2 Bus-based machines 
7.2.1 Introduction 

The architecture of any computer (be it PLC, personal computer, mini-
computer, games machine or company mainframe) can be represented
by Figure 7.2 and consists of a central processor (CPU), memory store
and input/output (I/O) linked to the outside world. These are linked by

Figure 7.1 The Allen Bradley BASIC module 
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a bus system (for busbar or omnibus, depending on what source you are
first exposed to) which has three components. The data bus carries data
between the various elements: I/O to store, store to CPU and so on.
The address bus carries the address of the store or I/O port concerned
with the data movement, e.g. ‘bring data from I/O port 17 to register C’
or ‘store the contents of register D in store location address hex E147’.
The final bus is the control bus. This carries timing and direction signals.

This structure allows the idea of an expandable DIY computer to be
implemented. The bus is laid out on a printed circuit backplane with
established connections for the data, address, and control signals. The
designer can then plug in CPU, memory, video and I/O cards to build
the computer needed to perform the required task. There are several bus
standards, and the commonest are described briefly in Section 7.2.3. The
IBM PC clone has this form as well, but the designer has less choice in the
selection of the CPU. 

There are actually two uses of the term ‘Bus-based machine’. In the
second form a complete master computer is linked to several external
devices via a ribbon cable. Data can be read from, or written to, these
external instruments. We will first look at the common GPIB (IEEE-488)
bus which is of this second type. 

7.2.2 IEEE-488 parallel interface bus 

This system was originally developed by Hewlett Packard to link HP
computers to HP instruments. In its original form it was known as
HP-IB (Hewlett Packard Instrumentation Bus). In 1975, the standard
was formulated by the American Institute of Electrical and Electronic
Engineers as standard IEEE-488 (also popularly known as GP-IB for
General Purpose Interface Bus). This allows the linking of up to 15 devices
and a computer with a total transmission length of 20 m. 

Figure 7.2 A computer architecture 
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The IEEE-488 bus can support three types of device: listeners, talkers
and controllers. Listeners accept data from the bus; typical examples are
a printer or a display. Talkers place data, on request, onto the bus;
a measuring instrument is a typical talker. A controller assigns the role
of any other devices on the bus but only one controller can be active at
any one time. The designations listener, talker and controller are
attributes of a unit (rather than a description of a unit’s function) and
many devices can fill more than one role. A computer, for example, can
act as all three. 

Signals on the bus can be grouped into a bidirectional data bus
(which serves the three roles of data transfer, address selection and
control selection), transfer control, interface management and grounds/
shields as summarized in Table 7.1.

Signalling is done at TTL levels, with 0 V representing ‘1’ and 3.5 V
‘0’ (the inverse of normal TTL signals). Open collectors are used to

Table 7.1 Signals on the IEEE-488 bus 

Group Designation Description Pin 

Data bus DIO 1 Data Input/Output 1 1
 2 2 2
 3 3 3
 4 4 4
 5 5 13
 6 6 14
 7 7 15
 8 8 16

Transfer control DAV Data valid 6
 NRFD Not ready for data 7
 NDAC Not data accepted 8

Interface IFC Interface clear 9
management SRQ Service request 10
 ATN Attention 11
 REN Remote enable 17
 EOI End or identify 5

Grounds/shield Shield 12 
 DAV ground 18 
 NRFD ground 19 
 NDAC ground 20 
 IFC ground 21 
 SRQ ground 22 
 ATN ground 23 
 LOGIC ground 24 
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allow the bidirectional data bus and bidirectional control signals (such
as NDAC and NFRD) to operate. 

The data bus is used for several purposes. It can obviously carry data
to one (or more) listeners or data from talkers. It can be used as an
address bus to enable or disable one (or more) devices. Up to 15 primary
device addresses and 16 secondary addresses can be supported. Normally
a secondary address controls an auxiliary function within a primary
device. For an analog input device, for example, the channel would be
selected with a secondary address, and the input value read with the
primary address. Address 31 has a special function, being used to disable
all active listeners. 

The data bus action is determined by the active controller which uses
the ATN line to signal whether the data bus is carrying data or control
(address) information. With the ATN line taken low, any active talker is
disabled and the new control mode selected as in Table 7.2.

The major attraction of the IEEE-488 bus is its ease of use, with the
operation being totally transparent to a programmer working in a high
level language. For example, the instruction 

OUTPUT 702, Setpoint 

sends the data in the variable ‘Setpoint’ in the computer (address 7
represented as 700 and acting as a talker) to the listener with address 02.
The actual bus operation corresponding to this instrument has four
steps: 

1 Deselect all listeners. 
2 Select talker (7). 
3 Select listener (02). 
4 Perform data transfer. 

IEEE-488 interface cards are available for many devices, both instru-
ments and computers such as IBM PC clones. 

Table 7.2 Control selection with ATN line. Bit 7 is not used 

 Bit
Function 7 6 5 4 3 2 1 0

Bus Command CCCCC X 0 0 C C C C C 
Enable Listen Address LLLLL X 0 1 L L L L L
Enable Talk Address TTTTT X 1 0 T T T T T
Enable Secondary Address SSSSS X 1 1 S S S S S
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7.2.3 Backplane bus systems 

Backplane bus systems are built in the form of Figure 7.3. A backplane
provides the data, address and control bus signals, and various cards
can be plugged into the bus to configure the system as required. 

The advantages of a bus system are obvious: standardization, use of
off-the-shelf cards, ease of expansion and a DIY bolt it together yourself
approach. Unfortunately each and every microprocessor manufacturer
and many equipment manufacturers devised their own standards, with
different-sized data words (8 bit, 16 bit or 32 bit), different address
ranges and, of course, different edge connectors and pin layouts. Fortunately
some common standards do seem to be emerging, notably the VME
and STE bus standards. 

VME bus is a system designed originally for 16-bit machines and
based on an earlier 16-bit bus system known as Versabus. A 24-bit
address bus gives a large address range. The introduction of 32-bit
microprocessors such as Intel’s 80386 or Motorola’s 68020 led to the
upgrade of the VME bus to handle 32-bit data with a second connector.
The bus thus exists in 16-bit (single 96-way DIN 41612 connector) or
32-bit (two 96-way connector) forms. In 32-bit form, the address bus
was also extended to 32 bit. VME bus cards are generally compatible
with either form. 

With a high-speed clock (24 MHz data transfer rate), 32-bit data bus
and an enormous address range, the VME bus is arguably the most
powerful industrial control system available. If speed of performance is

Figure 7.3 Bus-based computer 
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critical it cannot be beaten. It is, however, sophisticated and expensive
and, as one user said, ‘You don’t go shopping in a Formula One racing
car, you walk, go by bike or take the family estate car’. 

In this latter category comes the STE bus (and the PLCs discussed in
the rest of this book). The STE bus is an 8-bit data bus system with
origins in the earlier STD bus. It has 20 address lines (allowing over
1 Mbyte of memory space) and 4 kbytes of addressable I/O, and has
been formalized under the IEEE-1000 standard. This ensures compati-
bility between different manufacturers, and has led to it becoming a gen-
eral purpose accepted standard where the higher performance of the
VME bus is not required. 

It has many attractive features. The cards are based on the compact
Eurocard size (100 × 160 mm) and connections between the cards and
the backplane are made by a robust two-part connector (DIN 41612)
which is resistant to vibration and shock loads. 

STE bus has been designed around an interface between a master
processor and a wide range of I/O boards. The microprocessor type is
not defined, and any microprocessor can be used providing the interface
between the CPU board and the backplane meets the defined standards.
The bus can support up to three master CPU boards although, of
course, only one of these can be active at any one time. A well-defined
procedure is laid down for the selection of control of the bus when
contention occurs between the different masters. 

7.2.4 IBM PC clones 

Up to the early 1980s, the world of personal desktop computers (PCs)
was very varied, with a wide range of different machines and no common
standard between them. This was matched by a plethora of operating
systems, with usually each manufacturer devising its own. 

In 1981 the major mainframe manufacturer IBM entered the PC
market. The effect of this was dramatic. IBM dominates the commercial
computer market, and its timing for entering the PC market was,
through design or luck, immaculate. Personal computers were falling
in price and had reached a level where their widespread purchase could
be justified by most companies. Although the specification for the PC
was not particularly noteworthy (and the graphics ability of the early
machines was poor), IBM’s reputation ensured that the IBM family of
PCs rapidly dominated the market. 

IBM chose the software company Microsoft to provide the operating
system, known originally as PCDOS. This operating system had a loose
relationship to an earlier Z80-based operating system called CP/M. To
its credit, IBM was very open about the hardware and software of the
PC and designed a bus system which allowed easy expansion. A vast
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market of add-on cards appeared, along with cheap IBM clone computers.
For these Microsoft provide an operating system identical to PCDOS
(for all practical purposes) known as MSDOS. 

Since its introduction in 1981 the IBM PC family has undergone
a steady development. The original machine, with floppy disk storage
and known simply as the IBM PC, was based on the Intel 8088 micro-
processor, a 16-bit version of the ubiquitous Intel 8080 (and the Zilog
Z80) family. This was followed rapidly in 1982 by the IBM-XT, again an
8088-based machine with hard disk for storage. 

The next step occurred in 1984 with the introduction of the IBM-AT.
This was based on the more powerful Intel 80286 micro which could
handle a large amount of memory (16 Mbyte compared with the 1 Mbyte
of the 8088 and 64 kbyte of earlier micros such as the Z80). Unfortu-
nately MSDOS (and PCDOS) were designed around 1-Mbyte memories
and could not directly use all the memory capability of the 286. The
80286 could also support multitasking where the processor can operate
more than one task at a time. 

The PC and XT had been constructed with well-documented bus
systems allowing the addition of cards such as modems, interface cards,
etc. The AT introduced a bus with additional capabilities (which was
still compatible with the earlier standard). We will describe these bus
systems shortly.

In 1987 IBM introduced a new family, the PS/2 (for Personal System 2)
computers with a variety of number suffixes (PS/2-30, PS/2-50, etc.).
These are based on a range of Intel processors from the 286 (in the
PS/2-30, PS/2-50, PS/2-60), to the 32-bit 80386 (used in the PS/2-55,
PS/2-70 and PS/2-80) and 80486 (used in the PS/2-486). These machines
also introduced improved graphics facilities and a totally new bus system
called MCA (for Micro Channel Architecture). 

This new bus system was incompatible with the earlier bus standards
and has resulted in two divergent systems. The early bus (in the
original PC and XT) was based on a 62-way edge connector with
an 8-bit data bus and a 19-bit address bus plus control, timing and
power supply lines (+12 V, +5 V, 0 V and −12 V). The 8-bit data bus
was a restriction and IBM increased the data bus to 16 bits in the
IBM-AT bus with the addition of an extra 36-pin connector. Both
this (and the 62-way connector) use printed circuit board edge con-
nectors which are far less robust than the two-part connectors used
on STE bus. The two common standards, usually known as the PC
bus and AT bus, appear as Figure 7.4 along with smaller half-card
formats. These standards are also known as Industry Standard
Architecture (or ISA, which has nothing to do with the Instrument
Society of America). Although IBM had originated the ISA bus, it
never actively pursued legal action against clone and interface board
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manufacturers, and a flourishing industry in machines and add-ons
developed. 

IBM’s approach to the PS/2 MCA bus has, however, been markedly
different. The MCA is superior to, but incompatible with, the ISA bus,
introducing features such as automatic configuration, higher speed and
more tolerance to electrical interference. IBM has protected its rights to
the MCA with strict licensing fees and a far less open approach. 

Many of the clone manufacturers chose to co-operate against IBM and
jointly developed an improved version of ISA called EISA (for Extended
Industry Standard Architecture) as an alternative. There are thus four
different bus systems for the IBM family: the PC bus, the AT bus, the
EISA bus and the MCA. Future developments are not clear at the time of
writing, but the ISA bus will be available for the foreseeable future.

Although the original PC had poor graphics, these have improved
through the XT, AT and PS/2, with common standards being shown in
Table 7.4. The poor graphics capability of the early IBM PC led to the

Figure 7.4 Expansion cards for IBM PC family 

Table 7.3 Intel microprocessors used in PC-compatibles and clones 

 8086 8088 80286 80386 80486 Pentium

Data bus (bits) 16 8 16 32 32 32
Max. clock rate (MHz) 5 8 10 16 66 >200
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development of graphics cards by external manufacturers, such as the
monochrome Hercules Graphics Adaptor. These have largely been
superseded by the EGA and VGA standards. These latter standards are
useful for industrial graphics terminals.

Industrial PCs are based on clones and clone adaptor boards, usually to
the AT bus standard. Using serial communications they often act as
programming terminals or operator stations with PLCs. 

7.3 Programming for real time control 
The use of conventional programming languages was briefly discussed
in Section 1.3.3. Languages such as BASIC, FORTRAN, Pascal and C
were designed for general purpose, or scientific, computing and do not
normally provide functions for real time control. There are excep-
tions, however, with real time variations on the standard language.
MACBASIC, for example, is a version of BASIC, with instructions
such as AIN(M,N) which gets an analog input from channel N on card M.
Most of the single board and bus board computers described earlier
operate with non-standard additional instructions to BASIC or C. The
Pyramid Integrator, from Allen Bradley, for example, is a rack containing
a 5/250 PLC (the top of the PLC-5 family) and a DEC-Vax computer.
These communicate via the backplane. The PLC-5/Vax link is designed
to be controlled via a program written in C, with additional C instructions
(called the Data Table Library) available to access the PLC data table.

The programmer has to ensure that the computer program responds
to plant actions and operator inputs in a reasonable time. One way of
achieving this is simply to write a version of the PLC program scan of
Figure 7.5 which would have the form 

Table 7.4 Various graphics adaptors 

Mode Colours Horiz.×Vert.

CGA 4 320 × 200 
 2 640 × 200 
Hercules 2 720 × 348 
EGA 16 640 × 200 
 16 640 × 350 
VGA 16 640 × 200 
 16 640 × 350 
 16 640 × 480 
IBM 8514 256 1024 × 768 
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Begin 
Repeat

Read Plant Inputs 
Work out Required Actions 
Write Plant Outputs 

Until Hellfreezesover 
End. {of program} 

This is possibly satisfactory for small schemes, but could be wasteful of
computing time in large schemes because manual operations would expect

Figure 7.5 Comparison of computer and PLC operation: (a) PLC scan; (b) 
computer tasks 
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a response in under 0.5 s, but the level of water in, say, a large storage
tank would only need to be examined perhaps once a minute. Combined
in a single scan, activities with widely differing speed requirements
would be difficult to manage. 

An alternative is to have the required action broken down into a
series of tasks which are controlled by a common executive as shown in
Figure 7.5(b). The executive can call tasks at different intervals. Task 1,
for example, is an automanual changeover run at 0.5-s intervals, task 2
is checking the level in a water tank at 60-s intervals, task 3 is checking
the oil level, pressure and filter state in a hydraulic system every 2 s, and
so on. This helps to streamline the process by having no wasted time,
and aids programming, as each task is totally separate from every other
task and can be written independently. 

Specialist real time control languages are available, such as ICI’s RTL
(for Real Time Language) the US defense language ADA and the
CEGB’s CUTLASS (designed initially for power station control). 

CUTLASS is a compiled language, originally written for DEC mini-
computers, which follows the idea of Figure 7.5(b). A control scheme
is broken down into tasks which are activated at preset time intervals.
A task program starts with a definition giving its name, priority (in the
event of a clash, tasks with highest priority are run first) and its run rate,
for example 

TASK AUTOSLEW PRIORITY = 236 RUN EVERY 600 ms 

Next comes the definition of variables. These can be global (for the
whole program and usable in any task) or local to the task. CUTLASS
supports the usual forms of reals, integers and booleans (the latter being
called logic) but introduces the concept of good and bad data. Any data
coming from the outside world have the possibility of being erroneous
due to plant failures. In CUTLASS, data can have a value or the state
bad. Reals, for example, can have a numeric value or bad. Logic
(Boolean) can be true, false, or bad. This state is carried through oper-
ations; for example 

Aver : = (temp1 + temp2)/2 

will yield the average temperature if both temp1 and temp2 are good
values, but bad if either temperature reading is faulty. Some operations
can produce good outputs with some bad data. A majority vote, for
example, of two out of three, will give a good output with one bad
value. 

A digital input command has the form 

DIGIN CARD n m, variable 
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where n is the card number, m the channel number and variable the name
of the variable in the program to which the value is assigned, for example

DIGIN CARD 36 12, StartPB 

Digital outputs have the form 

DIGOUT variable CARD n m, action 1, action 2, action 3 

Here variables n and m have the same meaning, and action 1 is
performed if the variable is false, action 2 if it is true and action 3 if it is
bad. For example 

DIGOUT RUNLAMP CARD 23 7, CLEAR, SET, FLASH 

To show the principle, the small code segment below is part of a task
controlling auto/manual selection. Variables (whose meaning is obvious
from their names) have been previously declared. AutoPermit is a global
variable coming in from outside this program segment: 

DIGIN CARD 63, 15 AutoSW 
AutoReq :=AutoSW AND AutoPermit 
AUTOMAN AutoReq {A built in function putting mode to Auto} 
IF AutoReq=TRUE THEN 

AutoLamp=TRUE 
ELSE 
IF AutoPermit=TRUE THEN 

AutoLamp :=FALSE 
ELSE 
AutoLamp :=BAD 
ENDIF {Inner IF} 

ENDIF {Outer IF} 
DIGOUT AutoLamp CARD 14 7 CLEAR, SET, FLASH 

Analog inputs are read with a Multiplexed Analog Input (MXANIN)
instruction with the form 

MXANIN CARD m n, variable1 p, variable2 etc. 

where m is the card number, and n, p etc. are the channels. For example

MXANIN CARD 47 1 Setpoint 2, Actual Value 

CUTLASS has many built-in control functions such as filters, rate of
change, limiters and controllers. We can use the inputs from above as

Error : = (Setpoint − Actual Value) 
Actuator : = PID (Error, Gain. Ti, Td, Tf) 

where PID is a three-term control function, and Gain, Ti and Td are vari-
ables holding the settings for the controller and Tf is the high-frequency
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roll-off filter. The value in the variable Actuator can be written to the
outside world with an ANOUT instruction. 

Forth is a language also designed for real time control. Most
languages come from academic and research backgrounds. Forth was
designed by an astronomer for the control of a telescope at Kitts Peak in
the USA. It is an unconventional language in many respects, but once its
peculiarities are learned it is ideally suited for industrial use. 

Forth uses the idea of a pushdown stack, which can be considered
similar to the spring-loaded piles of plates seen occasionally in cafeterias.
As a plate is added, the pile moves down. Numbers in Forth are treated
in a similar way; Figure 7.6 shows the numbers 3, 5, 27, 2 being placed
in the stack. 

Most operations are concerned with numbers at the top of the stack.
Polish notation is used, with the arithmetic symbol or operation following
the data. The addition 273 + 28 is written 

273 28+

and behaves as in Figure 7.7(a). The more involved expression
(412 + 27 −16) × 3 is written 

Figure 7.6 The Forth stack 

Figure 7.7 Arithmetic and the Forth stack: (a) simple arithmetic; 
(b) evaluation of (412+27−16)×3 
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412 27 + 16 − 3*

and performed as in Figure 7.7(b). In each case we are working with the
top pair of digits. 

In Forth, the programmer extends the language by defining a series of
instructions and giving them a name. For example, we will write a series
of instructions to convert a temperature in Fahrenheit to Centigrade. It
assumes that the temperature in °F is in the top of the stack and leaves
the corresponding temperature in °C on the stack. The definition of a
new instruction called FTOC goes 

: FTOC {: means this is a definition} 
32 {goes to top of stack, pushing ×F down} 
– {subtract top of stack from next down} 
5* 
9/ {×C now on stack} 
; {; means end of definition} 

We can now write 

68 FTOC 

and 20 will be left on the stack. 
Suppose we want to control the batch process of Figure 7.8, where

two chemicals are added to a vat, mixed, heated to some preset tempera-
ture, mixed for some time again, and then drained ready for a new batch.
We could define a new word BATCH 

: BATCH 
ADD1 ADD2 MIX1 HEAT MIX2 DRAIN; 

These are all new words, with new definitions, for example 

Figure 7.8 Forth control of batch process
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: ADD1 
OPENV1 
BEGIN TESTL1 UNTIL {This is a Forth loop} 
SHUTV1; 

and 

: MIX1 
MOTOR ON 
BEGIN TIME1 UP UNTIL 
MOTOROFF 

Again, new words are introduced (OPENV1, TESTL1) which are again
defined until eventually the ‘built-in’ Forth words can be used. 
OPENV1 uses standard words: 

: OPENV1 
1 {state bit 1= ‘ON’} 
3 {channel number} 
5 {card number} 

; DIGOUT {standard word in TCS Forth} 
; 

and TESTL1 is simply 

: TESTL1 
4 {channel number} 
2 {card number} 
DIGIN {leaves state 1 or 0 of digital input 4 of card 2 on the stack}

; 

Analog inputs and outputs are handled in a similar manner. 
When all the user-defined words have been broken down to original

Forth words, the sequence is run with the one word BATCH. 
Forth programs are perfect examples of top-down programming,

where a requirement is split into smaller tasks, which are split into
subtasks and so on until units of small size and minimal complexity are
created. 

Where speed or minimal memory is of absolute importance, the
programmer has little choice but to work in machine code. Normally
programs are written in assembly code and turned into machine code
by an assembler provided by the suppliers of the target computer sys-
tem. The resulting program will be compact and fast, but can be difficult
to change or maintain if the documentation is not good. The ability to
monitor the running program (standard in all PLCs) will not be avail-
able unless fault-finding procedures have been written in as part of the
specification. 
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7.4 Soft PLCs
Traditionally PLCs have had their own operating systems, written by
the supplier and held in the PLC in a Read Only Memory (ROM). This
gives the PLC a great deal of security; the software is well proven and
cannot be modified, accidentally or intentionally, by the end user. It also
provides almost total immunity to the malign influences of computer
viruses. The author is almost tempted to say complete immunity, never
having heard of a PLC being infected by a virus.

Problems arise, though, when the PLC has to link to computer systems
for SCADA systems or to access database or spreadsheet files. This is usu-
ally done via serial communications; point to point RS232 at the simplest
level, networks such as Ethernet where there is more than one PLC or
computer. Allen Bradley did provide a solution for this called the Pyramid
Integrator which contained a PLC5 processor and a VAX computer in a
common chassis, but it was expensive and has been discontinued.

PLC manufacturers now sell the PLC operating system, and a common
solution is to run this on a normal PC. Cards fitted in the PC communicate
with the normal PLC plant I/O. This allows easy exchange of data
between the ‘PLC’ and the rest of the computer, but does bring some
problems which should be seriously considered. First is robustness.

Computers fall over from time to time, usually waiting until the most
inconvenient moment as anyone who has used a word-processor will
testify. Usually crashes are caused by clashes between software installed on
the machine. The system can be made more robust by strictly controlling
the software running on the computer and removing all unnecessary
program files (e.g. the games and accessories that are normally installed).

The second problem is the power-up time. After a power failure
a PLC will normally be working again within a second. A computer,
however, can take tens of seconds to come alive and this may be crucial.
Some protection can be given by battery backed Uninterruptable Power
Supplies (UPS), but in the author’s experience these seem to cause as
much trouble as they prevent.

A desktop PC is vulnerable to theft. Even if someone cannot walk out
with the PC tucked under their arm, the internal motherboard and
memory cards can be stolen and are easily hidden. Even worse,
‘dongles’ are often used to prevent copying of software and a thief, in
a hurry, may take the dongles. If a PC based system is left unattended
the security of the system should be seriously considered.

Finally, of course, there are computer viruses. These are best con-
trolled by restricting access to the computer and running up to date
virus detection software. Under no circumstances allow people to use
the computer to view their digital camera photos or print out a word
processor file from home.
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8 Practical aspects 

8.1 Introduction 
Programmable controllers are, simply, tools that enable a plant to function
reliably, economically and safely. This chapter considers some of the
factors that must be included in the design of a control system to meet
these criteria. 

8.2 Safety 
8.2.1 Introduction 

Most industrial plant has the capacity to maim or kill. It is therefore the
responsibility of all people, both employers and employees, to ensure
that no harm comes to any person as a result of activities on an industrial
site. 

Not surprisingly, this moral duty is also backed up by legislation. It is
interesting that most safety legislation is reactive, i.e. responding to inci-
dents which have occurred and trying to prevent them happening again.
Most safety legislation has a common theme. Employers and employees
are deemed to have a duty of care to ensure the health, safety and welfare
of the employees, visitors and the public. Failure in this duty of care is
called negligence. Legislation defines required actions at three levels. 

• Shall or must are absolute duties which have to be obeyed without
regard to cost. If the duty is not feasible the related activity must not
take place. 

• If practicable means the duty must be obeyed if feasible. Cost is not
a consideration. If an individual deems the duty not to be feasible,
proof of this assertion will be required if an incident occurs. 

• Reasonably practicable is the trickiest as it requires a balance of risk
against cost. In the event of an incident an individual will be required
to justify the actions taken. 
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Safety legislation differs from country to country, although harmoni-
zation is under way in Europe. This section describes safety from a
British viewpoint, although the general principles apply throughout the
European community and are applicable in principle throughout the
world. The descriptions are, of course, a personal view and should only
be taken as a guide. The reader is advised to study the original legisla-
tion before taking any safety related decisions. 

The Health and Safety at Work Act 1974 (HASWA) lays down the
main safety provisions in the United Kingdom. It is wide ranging and
covers everyone involved with work (both employers and employees) or
affected by it. In the USA the Occupational Safety and Health Act (OSHA)
affords similar protection. 

HASWA defines and builds on general duties to avoid all possible
hazards, and its main requirement is described in section 2(l) of the act:

It shall be the duty of every employer to ensure, so far as is reasonably practicable, the
health, safety and welfare at work for his employees. 

This duty is extended in later sections to visitors, customers, the general
public and (upheld in the courts) even trespassers. The onus of proof
of ‘reasonably practicable’ lies with the employer in the event of an
incident. 

8.2.2 Risk assessment 

It is all but impossible to design a system which is totally and absolutely
fail-safe. Modern safety legislation (such as the ‘six pack’ listed in
Section 8.2.6) recognizes the need to balance the cost and complexity of
the safety system against the likelihood and severity of injury. The
procedure, known as risk assessment, uses common terms with specific
definitions: 

• Hazard The potential to cause harm. 
• Risk A function of the likelihood of the hazard occurring and

the severity. 
• Danger The risk of injury. 

Risk assessment is a legal requirement under most modern legisla-
tion, and is covered in detail in standard prEN1050 ‘Principles of Risk
Assessment’.

The first stage is identification of the hazards on the machine or
process. This can be done by inspections, audits, study of incidents
(near misses) and, for new plant, by investigation at the design stage.
Examples of hazards are: impact/crush, snag points leading to entan-
glement, drawing in, cutting from moving edges, stabbing, shearing
(leading to amputation), electrical hazards, temperature hazards (hot
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and cold), contact with dangerous material and so on. Failure modes
should also be considered, using standard methods such as HAZOPS
(Hazard and Operability Study, with key words ‘too much of’ and
‘too little of’), FMEA (Failure Modes and Effects Analysis) and Fault
Tree Analysis. 

With the hazards documented the next stage is to assess the risk for
each. There is no real definitive method for doing this, as each plant has
different levels of operator competence and maintenance standards. A risk
assessment, however, needs to be performed and the results and conclu-
sions documented. In the event of an accident, the authorities will ask
to see the risk assessment. There are many methods of risk assessment,
some quantitative assigning points, and some using broad qualitative
judgements. 

Whichever method is used there are several factors that need to be
considered. The first is the severity of the possible injury. Many sources
suggest the following four classifications: 

• Fatality One or more deaths. 
• Major Non-reversible injury, e.g. amputation, loss of sight, disability.
• Serious Reversible but requiring medical attention, e.g. burn, broken

joint. 
• Minor Small cut, bruise, etc. 

The next step is to consider how often people are exposed to the risk.
Suggestions here are: 

• Frequent Several times per day or shift. 
• Occasional Once per day or shift. 
• Seldom Less than once per week. 

Linked to this is how long the exposure lasts. Is the person exposed to
danger for a few seconds per event or (as with major maintenance work)
several hours? There may also be a need to consider the number of
people who may be at risk; often a factor in petrochemical plants. 

Where the speed of a machine or process is slow, the exposed person
can easily move out of danger in time. There is less risk here than with
a silent high-speed machine which can operate before the person can
move. From studying the machine operation, the probability of injury in
the event of failure of the safety system can be assessed as: 

Certain, Probable, Possible, Unlikely 

From this study, the risk of each activity is classified. This classification
will depend on the application. Some sources suggest applying a points
scoring scheme to each of the factors above, then using the total score to
determine high, medium and low risks. Maximum possible loss (MPL), for
example, uses a 50 point scale ranging from 1 for a minor scratch to 50
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for a multi-fatality. This is combined with the frequency of the hazardous
activity (F ) and the probability of injury (again on a 1–50 scale) in the
formula: 

risk rating (RR) = F × (MPL + P )

The course of action is then based on the risk rating. 
An alternative and simpler (but less detailed approach) uses a table as

in Figure 8.1 from which the required action can be quickly read. 
There is, however, no single definitive method, but the procedure

used must suit the application and be documented. The study and
reduction of risks is the important aim of the activity. 

The final stage is to devise methods of reducing the residual risk to an
acceptable level. These methods will include removal of risk by good
design (e.g. removal of trap points), reduction of the risk at source (e.g.
lowest possible speed and pressures, less hazardous material), containment
by guarding, reducing exposure times, provision of personal protective
equipment and establishing written safe working procedures which
must be followed. The latter implies competent employees and training
programs.

8.2.3 PLCs, computers and safety 

A PLC can introduce potentially dangerous situations in different ways.
The first (and probably commonest) route is via logical errors in the

Figure 8.1 A simple risk assessment chart. This is only a guide, and should 
not be adopted without further study and only then if the conclusions can 
be justified for a specific hazard 
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program. These can be the result of oversight, or misunderstanding, on
behalf of the original designer who did not appreciate that this set of
actions could be dangerous, or by later modifications by people who
deliberately (or accidentally) removed some protection to overcome
a failure in the middle of the night. Midnight programming is particularly
worrying as usually the only person who knows it has been done is
the offending person, and the danger may not be apparent until a con-
siderable time (days, weeks, months, years) passes and the hazardous
condition occurs. 

The second possible cause is failure of the input and output modules;
in particular the components connected directly to the plant which will
be exposed to high-voltage interference (and possibly direct-connected
high voltages in the not unlikely event of cable damage). Output modules
can also suffer high currents in the (again not unlikely) event of a short
circuit. 

Typical output devices are triacs, thyristors or transistors. The failure
mode of these cannot be predicted; all can fail short circuit or open
circuit. In these conditions the PLC would be unable to control the
outputs. Similarly an input signal card can fail in either the ‘On’ or ‘Off’
state, leaving the PLC misinterpreting a possibly important signal. 

The next failure mode is the PLC itself. This can be further divided
into hardware, software and environmental failures. A hardware failure
is concerned with the machine itself; its power supply, its processor, the
memory (which contains the supplier’s software with the ‘personality’ of
the PLC, the user’s program, and the data storage). Some of these
failures will have predictable effects; a power supply failing will cause all
outputs to de-energize, and the PLC supplier will have included checks
on the memory in his design (using techniques similar to the CRC dis-
cussed in Section 5.2.7). Environmental effects arise from peculiarities in
the installation such as dust, temperature (and rapid temperature changes)
and vibration. 

The final cause is electrical interference (usually called noise). Inter-
nally almost all PLCs work with 5 volt signals, but are surrounded
externally by high-voltage, high-current devices. Noise can cause input
signals to be misread by the PLC, and in extreme cases can corrupt the
PLC’s internal memory. PLCs generally have internal protection against
memory corruption and noise on remote I/O serial lines (again using
CRC and similar ideas) so the usual effect of noise is to cause a PLC
to stop (and outputs to de-energize). This cannot, however, be relied
upon. 

There is no such thing as an absolutely safe process; it is always poss-
ible to identify some means of failure which could result in an unsafe
condition. In a well-designed system these failure modes are exceedingly
unlikely. 
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Figure 8.2 shows a normal motor starter circuit built without a PLC.
We will deal with emergency stop circuits in the following section, but
for the time being the safety precautions here are 

(a) Isolation switch at the MCC removes the supply. 
(b) Local isolation switch by the motor. This, and (a), are for protec-

tion during maintenance work on the motor or its load. 
(c) Normally closed contact on the stop and emergency stop buttons.

A broken wire will act as if a stop button has been pressed, as will
loss of the supply. 

(d) If the emergency stop is pressed and released, the motor will not
restart. 

(e) Isolation, stop and emergency stop have priority over start. 

It is possible, though, to identify dangerous failure modes. The button
head of the emergency stop button could unscrew and fall off, or the
contacts of the contactor could weld made (albeit two welding together

Figure 8.2 Conventional motor starter: (a) physical arrangement; (b) circuit 
diagram 
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are needed to cause an unsafe condition), but these failure modes are
exceedingly rare, and, without discussing further details of the emer-
gency stop function, Figure 8.2 would be generally accepted as safe. 

In Figure 8.3 the same function has been provided by an unsafe PLC
system. To save costs the MCC and local isolators have been replaced
by simple switches which make to say ‘isolate’. Similarly normally open
contacts have been used for stop and emergency stop. This is controlled
by the unsafe program of Figure 8.3(b). 

It is important to realize that to the casual user, Figures 8.2 and 8.3
behave in an identical manner. The differences (and dangers) come in
fault, or unusual, conditions. In particular 

(a) A person using a programming terminal can force inputs or outputs
and override the isolation. Although it is unlikely that anyone

Figure 8.3 Unsafe PLC-based motor starter: (a) physical arrangement; 
(b) PLC program 
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would do this deliberately, it is easy to confuse similar addresses
and swap digits (forcing 0:23/01 instead of 0:32/01, for example).

(b) A loss of the input control supply during running will mean the
motor cannot be stopped by any means. 

(c) If the emergency stop is pressed and released, the motor will restart.

None of these are apparent to the user until they are needed in an
emergency. 

A prime rule, therefore, for using PLCs and computers is ‘The system
should be at least as safe as a conventional system.’ 

Figure 8.4 is a revised PLC version of Figure 8.2. The isolators have
been reinstated with auxiliary contacts as PLC inputs, and normally
closed contacts used for the stop and emergency stop buttons. An auxil-
iary contact has been added to the starter, and this is used to latch the
PLC program of Figure 8.4(b). The emergency stop is hardwired into
the output and is independent of the PLC, and on release the motor will
not restart (because the latching auxiliary contact in the program will
have been lost). On loss of control supply the program will think the

Figure 8.4 Safe PLC motor starter: (a) physical arrangement; (b) PLC 
program 
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stop button has been pressed, and the motor will stop. Figure 8.4 thus
behaves in failure as Figure 8.2, and meets the rule above. 

Figure 8.5 shows a similar idea used to disable a hydraulic system
when the operator opens a gate giving access to a machine. The gate
removes power to the PLC output card driving the solenoids which will
all de-energize regardless of what the PLC is doing. A separate input to
the PLC also software disables outputs. One of the solenoids is the load-
ing valve which, when de-energized, causes the manifold pressure to fall
to near zero. This pressure is monitored by hardwired traffic lights. 

Although these examples are simple, the necessary analysis and con-
siderations are identical in more complex systems. 

Complex electronic systems can bring increased safety. In Figure 8.6
a thyristor drive is controlling the speed of a large DC motor. The
arrangement is typical; switched isolator for maintenance and an
upstream AC contactor. It is required to add an emergency stop to this
drive. Using this to hardwire the AC contactors will obviously stop the
drive, but the inertia of the motor and the load will keep it rotating for
several seconds. A thyristor drive, however, can stop the load in less
than one second by regenerative braking the motor, but this requires
the drive to be alive and functional. 

The operation of the emergency stop implies a dangerous condition
in which the fastest possible stop is required. It is almost certain that at
this time the drive controls are functional and there are no ‘latent’ faults.
Faults with the speed control system would have been noticed by the
operator, for example. From a risk assessment, the author would argue
that if a guarding system was not practicable, the emergency stop
should operate in two ways. First, it initiates an electronic regenerative
crash stop via the control system which should stop the drive in less

Figure 8.5 Gate-controlled safety access 
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than one second (albeit at great strain to the motor and mechanics).
The emergency stop also releases a delay drop-out hardwire relay set
for 1.5 seconds which releases the AC contactor. This gives the safest
possible reaction to the pressing of the emergency stop button. 

Safety considerations do not therefore explicitly require relay-based,
non-electronic hardware, but the designer must be prepared to justify
the design decisions and the methods used. Where complex control sys-
tems are to be used, a common method is to duplicate sensors, control
systems and actuators. This is known as redundancy. 

A typical application is a boiler with feed water being held in a drum.
Deviations in water level are dangerous; too low and the boiler will
overheat, possibly to the point of melting the boiler tubes; too high and
water can be carried over to the downstream turbine with risk of
catastrophic blade failure. High- and low-level sensors are provided and
each are duplicated. The control system reacts to any fault signal, so two
sensors have to fail for a dangerous condition to arise. If the probability
of a sensor failure in time T is p (where 0 < p < 1) the probability of
both failing is p2. In a typical case, p will be of the order of 10−4 giving
p2 a probability of 10−8. 

There are two disadvantages. The first is that a sensor can fail into
a permanently safe signal state, and this failure will be ‘latent’, i.e. hidden
from the user with the plant running on one sensor. The second prob-
lem is that the plant reliability will go down, since the number of sensors

Figure 8.6 A DC drive requiring an E stop
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goes up and any sensor failure can result in a shutdown. Both of these
effects can be reduced by using ‘majority voting’ circuits, taking the vote
of two out of three or three out of five signals. 

So far we have duplicated the sensors. To give true redundancy, it is
sensible to provide duplication in the control system as well to protect
against hardware and software failures in the system itself. Figure 8.7
shows three temperature sensors (for redundancy) connected into two
separate and independent PLC systems, one concerned with control and
safety and one purely concerned with control. A simultaneous failure of
both is required to give a hazard. 

Redundancy can be defeated by ‘Common mode’ failures. These are
failures which affect all the parallel paths simultaneously. Power supplies,
electrical interference on cables following the same route and identical
components from the same batch from the same supplier are all prone
to common mode failure. For true protection, diverse redundancy must
be used, with differences in components, routes and implementation to
reduce the possibility of simultaneous failure. 

Examples such as the duplicate control scheme of Figure 8.7 are also
vulnerable to a form of common mode failure called a ‘systematic failure’.
Suppose the temperature sensors are compared, inside the program,
with an alarm temperature. Suppose both are identical systems, running
the same program containing a bug which inadvertently (but rarely, so
it does not show up during simple testing) changes the setting for the
alarm temperature (from, say, 60 °C to 32 053 °C). Such an effect could
easily occur by a mistype in a move instruction in a totally unrelated part
of the program. This error will affect both control systems, and totally
remove the redundancy. 

If reliance is being made on redundant control systems, they should
be totally different; different machines with different I/O and different
programs written by different people with the machines installed running

Figure 8.7 Duplication of sensor and control/protection systems 
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on different power supplies with different types of sensors connected by
different cable routes. This is what true redundancy means. 

The Health and Safety Executive (HSE) became concerned about the
safety of direct plant control with computers, and produced an occasional
paper OP2 ‘Microprocessors in Industry’ in 1981. This was followed
in 1987 by two booklets Programmable Electronics Systems in Safety Related
Applications, book 1, an Introductory Guide and book 2, General Technical
Guidelines. Book 1, like the earlier 1981 publication, is a general discus-
sion of the topic, with book 2 going through the necessary design stages.
They suggest a five stage process: 

(i) Perform a hazard analysis of the plant or process (key phrases like
‘too much of’, ‘too little of’, ‘over’, ‘under’ are useful here). 

(ii) From this, identify which parts of the control system are concerned
with safety and which are concerned purely with efficient produc-
tion. The latter can be ignored for the rest of the analysis. 

(iii) Determine the required safety level (based on accepted attainable
standards or published material). 

(iv) Design safety systems to meet or exceed these standards. The
HSE stress the importance of ‘quality’ in the design; quality of
components, quality of the suppliers and so on. 

(v) Assess the achieved level (by using predicted probability of failure
for individual parts of the design). Revise the design if the
required level has not been achieved. 

Testing is a crucial part of safety, and it can be difficult to complete
a sensible test routine with the unavoidable pressures to get a plant into
production. Once the control room lights are on, there is a ‘gung-ho,
let’s be away’ attitude. This can be hard to resist, particularly if the
project is late, but it can be lethal. The only way to avoid this trap is to
have a pre-agreed safety checklist (written in the cold light of day well
before testing starts) which can be ticked off item by item. The engineer
then has firm grounds for not releasing the plant until all items are
cleared. 

Maintenance is, perhaps, the most dangerous time. Chernobyl,
Flixborough, Three Mile Island, Bhopal, Piper Alpha and the Charing
Cross rail accident all had seeds in ill-advised maintenance activity. The
author has seen faulty protection systems bypassed ‘to get the plant
away’, with the bypasses still in place weeks later. The ease of program-
ming of PLCs makes them very vulnerable (and it is for this reason that
programs held in ROM are preferred for safety applications). 

Plant must be put into a safe condition before people work on it. The
need for electrical isolation and a Permit to Work system is generally
appreciated (and the isolators in Figure 8.2 are provided for this purpose)
but the danger from pneumatic or hydraulic actuators is often overlooked.
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If a PLC stops or is powered down (a not unlikely event on maintenance
periods) all solenoids will de-energize and plant may move. Isolation
procedures must therefore include all actuators and not just the obvious
electric motors. 

Using relays it is possible to design circuits which are almost fail-safe
using the principle shown for simple traffic lights in Figure 8.8. (No circuit
can ever be totally fail-safe, of course.) Here the cross-coupling of the
relays, along with the use of techniques such as spring-loaded terminals
to prevent cores coming loose under vibration, ensures that the system
can fail with no lights, or locked onto one route, or showing both red,
but it cannot fail showing both green. To achieve this, high-quality
relays are used, constructed in such a manner that an internal mechanical
collapse cannot lead to normally open and normally closed contacts
being made together. With a very high degree of safety, the idea of

Figure 8.8 Safety system with hardwire relays 

075065757X-ch008.fm  Page 305  Saturday, June 28, 2003  5:02 PM



306 Programmable Controllers

Figure 8.8 is widely used in lifts, traffic lights, burner control and railway
signalling. 

The safety levels of Figure 8.8 are becoming achievable with some
PLCs. Siemens market the 115F PLC which has been approved by the
German TUV Bayern (Technical Inspectorate of Bavaria) for use in
safety critical applications such as transport systems, underground
railways, road traffic control and elevators. The system is based on two
115 PLCs and is a model of diverse redundancy. The two machines run
diverse system software and check each other’s actions. There is still
a responsibility on the user to ensure that no systematic faults exist in
the application software. 

Inputs are handled as in Figure 8.9. Diverse (separate) sensors are fed
from a pulsed output. A signal is dealt with only if the two processors
agree. Obviously the choice of sense of the signal for safety is important.
For an over-travel limit, for example, the sensors should be made for
healthy and open for a fault.

Actuators use two outputs (of opposite sense) and two inputs to check
the operation as Figure 8.10. Each subunit checks the operation of the
other by brief pulsing of the outputs allowing the circuit to detect cable
damage, faulty output modules and open circuit actuators. If, for
example, output B fails On, both inputs A and B will go high in the Off
state (but the actuator will safely de-energize). 

The operation of Figures 8.9 and 8.10 is straightforward, but it
should not be taken as an immediately acceptable way of providing a
fail-safe PLC. The 115F is truly diverse redundant, even the internal
integrated circuits are selected from different batches and different
manufacturers, and it contains well-tested diverse self-checking internal

Figure 8.9 Safety-critical input with the Siemens 115F PLC 
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software. A DIY system would not have these features, and could be
prone to common mode or systematic failures. 

Figure 8.11 shows a dynamic fail-safe circuit sometimes used in appli-
cations such as gas burner control. Here a valid output signal is a square
wave pulse train of a specific frequency (obtained by turning an output
on and off rapidly). This oscillating signal passes through a narrow
bandpass filter and, when rectified, energizes the actuator. Failure of the
CPU would lead to failure of the pulse train (or a shift in frequency of
the pulse train which would then be rejected by the filter). Failure of the
output would give a DC signal which would again be rejected by the
filter. Failure of any component in the filter will cause a shift in the band-
pass frequency and a failure to respond to normal outputs. The principle
of Figure 8.11 is often used as a single ‘watchdog’ output which can be
used as an interlock to say the PLC is healthy. 

Figure 8.10 Safety-critical output with the Siemens 115F PLC 

Figure 8.11 Dynamic ‘failsafe’ circuit 
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8.2.4 Emergency stops 

Most plants have moving parts with the ability to cause harm. There is
therefore a need to provide some method of stopping the operation in
the shortest possible time when some form of danger is seen by the
operators. Usually the initiation is provided by emergency stop push-
buttons at strategic points around the plant. These must be red, mush-
room headed buttons surrounded by a yellow surface. They must latch
and need some form of manual action (key, twist or pull) to release.
Even when the button is released the plant must not start again without
some separate restart operation. Conveyors and similar items use pull
wire emergency stops which have to be physically reset. 

Until fairly recently, an emergency stop circuit would operate as
shown in Figure 8.12(a), and indeed the earlier circuit of Figure 8.2
implemented the emergency stop in this way. Operation of the button
breaks the control circuit to the contactor, causing it to de-energize and
remove power from the machine. This circuit, however, has several
failure modes which may be dangerous. In particular, the contactor
contacts may weld made or the opening spring in the contactor may
break. In these circumstances the emergency stop will have no effect. 

Figure 8.12(b) uses redundancy to give improved safety. With redun-
dancy, care must be taken to ensure that the failure of one element cannot
lead to continued, apparently normal, operation on the remaining
elements with reduced safety. In this circuit both contactors must fail for
the emergency stop to be inoperative. The two normally closed contacts
in the left-hand leg give some protection against welding or sticking of
a contactor. A firm fault with one contactor hard welded will cause its
normally closed contact to open, and the circuit will fail to start. The

Figure 8.12 (a) A simple emergency stop circuit. This circuit has several 
potentially dangerous failure modes. (b) An improved emergency stop 
circuit. For this circuit to work, however, the two contactors must have 
overlapping normally open and normally closed contacts and the circuit 
can fail in an unsafe condition
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circuit, though, is not ideal. For it to operate at all there must be an
overlap between the normally open and normally closed contacts (i.e.
a short region where both are made together). It is thus feasible for a
contactor to fail with both normally open and normally closed contacts
made. In addition overlapping contacts must be spring loaded in some
way, which introduces additional hazardous failure modes. Although
much better than the circuit in Figure 8.12(a) it still has hazards. 

Safety can be improved further by using three contactors as in
Figure 8.13(a) and positively driven contacts. These ideas have been
traditionally used in traffic lights and railway signalling to ensure, for
example, that two routes cannot be given a green ‘Go!’ signal at the
same time. Positively driven contacts are constructed in such a way that
both normally open and normally closed contacts are moved by the
same mechanism and cannot both make at the same time even in the
event of failure. The principle is shown in Figure 8.13(b). 

In Figure 8.13(a), three contactors are used in series. One, K1, uses
normally closed contacts and the others normally open contacts. For
normal operation, therefore, K1 must be de-energized and K2/K3 ener-
gized. When first powered up, or when the emergency stop has been
pressed and released, all contactors are de-energized. When the reset
button is pressed, K1 will first energize provided K2 and K3 have not
stuck (positively driven contacts remember). Contacts from K1 then
bring in K2 and K3 which de-energize K1 but hold themselves in via
their own contacts. 

A single failure of any contactor will cause the circuit to fail or
prevent it from starting. It is still, however, vulnerable to simultaneous

Figure 8.13 (a) Emergency stop circuit built with non-overlapping 
contacts. This circuit has to be reset after the stop button has been 
pressed and is still safe with a single failure. (b) The principle of a 
non-overlapping positively driven contact set 
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welding of K2 and K3, but the probability of this is usually thought to
be acceptably low. 

Figure 8.13(a) is acceptable for small loads of a few kilowatts, but is
a bit impractical (and expensive) for large loads. In Figure 8.14 the safety
circuit is constructed from low-power positively driven relays, which
then control two redundant contactors C1 and C2. The (positively
driven) auxiliary contacts of these contactors are connected in series
with the reset pushbutton. Failure of a contactor in an unsafe mode thus
prevents a restart and, like Figure 8.13(a), the circuit can only be started
with both contactors in a healthy condition. Also like Figure 8.13(a)
there is a residual risk of both contactors failing in a made state whilst
running. 

The arrangement of Figures 8.13(a) and 8.14 is commonly used and
is available as a pre-made safety relay from many control gear manu-
facturers. 

Although the residual risk in these circuits is very low, it may not be
acceptable in some circumstances. In particular, the circuit relies on
a single contact in the emergency stop itself, and it is possible for a cable
fault to bridge out the pushbutton contact (a severed cable will, of course,
cause the safety relay to stop the plant). If a risk assessment of the
application demands a lower residual risk (often when flexible cable is
used to the stop button), two contacts may be used on each pushbutton,
with one switching the supply voltage to the safety relay and one
the return as in Figure 8.15. If a four core cable is used to link the
button, there is a very high probability that any cable fault will either
de-energize the safety relay or cause the circuit protection fuse or
breaker to open. 

Emergency stop circuits need regular maintenance and testing. The
author has seen buttons in a dusty and humid atmosphere build up an

Figure 8.14 Emergency stop circuit of Figure 8.13(a) modified for use 
with separate large contactors 
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almost concrete ring under the mushroom head which prevented the
button operating even when hit with a hammer! Regular inspection and
testing will prevent similar problems. Remember that inspection and
maintenance of safety equipment is a legal requirement under most safety
legislation. 

Section 8.2.2 introduced the idea of Risk Assessment. European
Standard prEN954-1 gives a risk assessment chart (shown in Figure 8.16)
for fail-safe control equipment (which includes emergency stops and
movable guards). This results in the following categories: 

• Category B Minimum standards to meet operational requirements
of the plant with factors such as consideration of humidity, tempera-
ture and vibration.

Figure 8.15 Emergency stop pushbutton with dual action to guard 
against contact failure or cable damage. This will be used with circuits 
similar to Figures 8.13 and 8.14 and disconnect both the supply and 
return when pressed 

Figure 8.16 Emergency stop selection chart 
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• Category 1 As ‘B’ but safety systems must use ‘well-tried’ principles
and components. Sole reliance on electronic or programmable systems
at this level is not permitted. 

• Category 2 As ‘B’ but the machine must be inhibited from starting if
a safety system fault is detected on starting. Single channel actuation
(i.e. emergency stop buttons or gate limit switches) is permitted
providing there is a well-defined regular manual testing procedure. 

• Category 3 As ‘B’ but any fault in the safety system must not lead to
the loss of the safety function and, where possible, the fault should
be identified. This implies redundancy and dual channel switches as
Figure 8.15. 

• Category 4 As ‘B’ any single fault must be detected, and any three
simultaneous faults shall not lead to the loss of the safety function. 

The previous section discussed the safety aspects of PLCs and com-
puters. In all bar the most complex system it is not financially viable to
use the redundancy techniques needed to achieve adequate safety levels
from a purely software/electronic emergency stop system. The best
system is to have a hardwired safety system which acts in series between
the PLC outputs and the actuators (contactors, valves or whatever).
A contact should also be taken as an input to the PLC to say the safety
system has operated (in practice, of course, an input is given which says
the safety system has not operated so a fault or loss of supply causes
motion to cease). This input will, via the program, cause the output to
turn off so the system needs some manual action beyond the removal of
the emergency signal to restart. 

Where several devices are to be turned off together in an emergency
(e.g. several solenoid valves), the emergency stop contacts can remove
the supply to the relevant output cards as shown earlier in Figure 8.5. 

One final comment is that an effective guarding system can reduce
the requirements of the emergency stop system by reducing the exposure
(i.e. the system will be inoperative whenever people are at risk). This is
discussed in the following section. 

8.2.5 Guarding 

One very effective method of reducing risk is to restrict access to
dangerous parts of a machine or process by fixed or movable guards.
Fixed guards are simple to design, but movable guards, often required
where access is required for production or maintenance, need careful
design. 

Movable guards must provide two safety functions. Firstly, they must
ensure the machine cannot operate when the guards are open.
Secondly, if the machine or plant has an extended stopping time, the
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guards must be locked in some way until the machine has come to
a standstill. 

The intuitive, but incorrect, method of ensuring machine isolation when
a guard is open is to use a limit switch which makes when the guard is
closed as shown on Figure 8.17(a). This has two potentially dangerous
shortcomings. In this arrangement (called negative or non-positive
operation) the switch is closed by the guard and opened by a spring.
Failure of this spring may result in the contacts still being made when
the guard is open. In addition the switch is accessible when the guard is
open and can easily be ‘frigged’ by the operators to bypass the safety
feature. 

In Figure 8.17(b) the guard itself pushes open the switch on opening,
and a spring is used to make the switch when the guard recloses. Failure
of the spring thus prevents the machine from operating. If the contacts
weld, either the guard cannot be opened, or the opening action will
break the weld or switch. With the switch being pushed down by the
guard and raised for operation it is very difficult to bypass. This is
called positive operation. A very low residual risk is obtained if the
guard is equipped with both types of switch. 

Photocell beams are another possible solution to guarding. These
should be self-checking systems designed for safety applications, not
simple photocell sensors. Care must be taken in the mounting to ensure
the beam cannot be bypassed by going over or under, and the operator

Figure 8.17 Use of guarding limit switches. (a) Non-positive switch 
(guard makes, spring opens); (b) Positive switch (guard opens, spring 
makes) 

075065757X-ch008.fm  Page 313  Saturday, June 28, 2003  5:02 PM



314 Programmable Controllers

cannot pass totally through the beam and out the other side. Pressure
mats may also be used but again the design needs some care. 

In applications such as shears and presses, dual two-handed push-
buttons offer good protection. The use of these builds on the relay circuits
described above, and specialist dual control relays can be purchased.
It should, though, be noted that dual pushbutton systems only protect
the operator and not other people.

Maintenance and repair usually requires access to parts of the process
barred to operators. This puts maintenance staff at higher risk from
trapping, entanglement and crushing. Often the only way to achieve an
acceptable residual risk is a full isolation and Permit to Work system
with removal of energy at pre-determined points such as motor control
centres, hydraulic accumulators, air lines, etc. The removal of energy
should be tested, then the isolation points locked, isolation boards
applied and the written permit issued. Only then can work commence.
For smaller/shorter jobs with low risk, the risk assessment may show
that a local removable safety key system may be acceptable. Note that
a risk assessment should be done for each possible maintenance job.

8.2.6 Safety legislation 

There is a vast amount of legislation covering health and safety, and
a list is given below of those which are commonly encountered in indus-
try. It is by no means complete, and a fuller description of this, and
other, legislation is given in the third edition of the author’s Industrial
Control Handbook. An even more detailed study can be found in Safety at
Work by John Ridley, both books published by Butterworth-Heinemann.

Health and Safety at Work Act 1974 (the prime UK legislation) 

The following six regulations are based on EEC directives and are known
collectively as ‘the six pack’: 

Management of Health and Safety at Work Regulations 1992 
Provision and Use of Work Equipment Regulations 1992 (PUWER)
Manual Handling Regulations 1992 
Workplace Health, Safety and Welfare Regulations 1992 
Personal Protective Equipment Regulations 1992 
Display Screen Equipment Regulations 1992 

Reporting of Injuries, Diseases and Dangerous Occurrences Regulations
(RIDDOR) 1995 
Construction (Design and Management) Regulations (CDM) 1994 
Electricity at Work Regulations (1990) 
Control of Substances Hazardous to Health (COSHH) 1989 
Noise at Work Regulations 1989 
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Ionizing Radiation Regulations 1985 
Safety Signs and Signals Regulations 1996 
Highly Flammable Liquids and Liquefied Petroleum Gas Regulations
Fire Precautions Act 1971 
Safety Representative and Safety Committee Regulations 1977 
Health and Safety Consultation with Employees Regulations 1996 
Health and Safety (First Aid) Regulations 1981 
Pressure Systems and Transportable Gas Containers Regulations 1989.

8.2.7 IEC 61508 

IEC61508 is the International Electrochemical Committee Standard on
electrical, electronic and programmable (E/E/PE) safety systems. Like all
modern safety concepts it is based on the idea of risk assessment and the
implementation of measures to reduce the risk to an acceptable level.
It is a complex document and this section can only give a brief introduc-
tion to the basic ideas. The reader is strongly advised to study the full
standard or take professional advice before designing any system where
safety will be an issue. 

Because it is an international standard rather than a UK or European
directive compliance is not mandatory, however the Health and Safety
Executive’s official view is ‘IEC61508 will be used as a reference standard
in determining whether a reasonably practical level of safety has been achieved when
E/E/PE systems are used to carry out safety functions’.

There are several terms in IEC61508 which carry specific meaning: 

Hazard is the potential for causing harm to people or the environment.

Risk is a combination of the probability of the hazard and the severity
of the result: 

Risk = probability × consequence 

You can reduce the risk by reducing the probability or the consequence.
For example, with motor cars, imposing speed limits reduces both the
probability of an accident and also the likely consequences. A cycle rider
wearing a helmet reduces the concequences of an accident. 

Equipment under Control (or EUC) is the plant under consideration.
It consists of sensors, a logic control system and actuators.

Functional Safety relies on the correct operation of safety functions
when required. Safety functions are the parts of the plant which provide
safety such as flow sensors, pressure relief valves, safety gates, emergency
stop buttons, pull wires, etc. 

IEC 61508 defines the four levels of risk classification given in Table 8.1.
The level of accepted risks varies surprisingly from industry to industry,

but IEC61508 suggests the risk classifications in Table 8.2 are typical.
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A hazardous plant can be represented by Figure 8.18. The probability
and consequence of each hazard gives a risk. This can be reduced by
a combination of external risk reduction facilities (e.g. enclosures), other
systems (e.g. personal protective equipment) and in the centre the E/E/PE
safety system itself. The combination of these three measures gives the
necessary risk reduction to produce a tolerable risk. 

Table 8.1 Risk classification

Risk class Interpretation 

I Intolerable risk 
II Undesirable, tolerable only if risk reduction is impossible 

or costs are disproportionate to the benefits gained 
III Tolerable provided the costs of further improvements are 

disproportionate to the benefits gained 
IV Negligible risk. Acceptable 

Table 8.2 Based on Table B1 in IEC61508-5 

Catastrophic is more than one death.
Critical is one death or one or more serious injuries.
Marginal is one or more minor injuries.
Negligible is a trivial injury or plant damage and resultant loss of production.

Frequency  Consequences 

  Catastrophic Critical Marginal Negligible

Frequent 1 per year I I I II 
Probable 1 per 5 years I I II III 
Occasional 1 per 50 years I II III III 
Remote 1 per 500 years II III III IV 
Improbable 1 per 5000 years III III IV IV 
Incredible 1 per 50 000 years IV IV IV IV 

E/E/PES
Safety Related
System

Required Risk Reduction

Frequency
of Event

Consequence
of Event

EUC
Risk

External
Risk
Reduction

Other
Safety Related
Systems

Tolerable
Risk
Target

Figure 8.18 Required risk reduction
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Risk reduction is described in terms of Safety Integrity Levels or SILs.
There are two groups of SIL. The first, called a Low Demand Mode of
Operation will only be required to operate very rarely (if at all). A typical
example is a car air bag which is a complex safety function designed to
reduce the probability of injury to the occupants of a car in the event of
an accident. Here the SIL is determined by the probability of failure to
perform its design function on demand as shown on Table 8.3.

The second, called High Demand Mode or Continuous Mode is
concerned with a safety function that monitors the EUC continuously.
A typical example would be the drum water level system in a high pres-
sure boiler. Here the SIL is the probability of dangerous failure per hour
as defined in Table 8.4.

The study of Figure 8.18 will show the SIL level required. Note that
a complete study is required with investigation of all failure modes of
the safety functions. It is not just a case of obtaining the failure rate of
a sensor and valve. 

Suppose we have done a risk assessment and identified a risk frequency
of once per year with a consequence of one injury. Table 8.2 gives this
a risk classification of I. We need to reduce this from class I to class III
which means we need to reduce the risk frequency to approximately
1 per 5000 years. This implies a Risk Reduction Factor (RRF) of 5000. 

The plant designers, though, can provide a risk reduction factor of
15 by improved mechanical design. The demand on the E/E/PE safety

Table 8.3 Low demand mode 

SIL Probability of failure

4 >= 10−5 to 10−4 
3 >= 10−4 to 10−3 
2 >= 10−3 to 10−2 
1 >= 10−2 to 10−1 

Table 8.4 High demand mode 

SIL Probability of dangerous 
failure per hour 

4 >= 10−9 to 10−8 
3 >= 10−8 to 10−7 
2 >= 10−7 to 10−6 
1 >= 10−6 to 10−5
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system now becomes a RRF of 333 giving a required probability of
failure on demand of 3 × 10−2 . From Table 8.3 this gives an aim integ-
rity level of SIL-2 for our E/E/PE safety system. 

The Heath and Safety Executive publish an excellent book called ‘Out
of Control’, ISBN 0-7176-0847-6 which every PLC user should read.
Part of this book analyses the major causes of control related accidents
and comes up with the following worrying statistics: 

44% caused by bad or incomplete specification 
15% caused by design errors 
6% introduced during installation and commissioning 

14% occur during operation and maintenance 
21% caused by ill thought out modifications 

In other words, the commonest cause of accidents were flaws in the
original specification where the need for a safety function was not
recognized or was badly described. 

IEC61508 therefore lays down the safety life-cycle shown on Figure 8.19.
Each stage produces output documentation which is the input for the
following stages. This documentation should be available at all times.
The sixteen stages are: 

Stage 1 Concept. An understanding of the EUC and its environment is
developed along with relevant legislation.

Stage 2. Overall Scope Definition. Define the boundaries of the EUC and
its control system in all modes of operation (e.g. start up, normal oper-
ation, etc.). Specify the scope of the hazard and risk analysis.

Stage 3. Hazard and Risk Analysis. This should be done for all modes of
operation and all reasonably foreseeable conditions including faults and
operator errors. 

Stage 4. Overall Safety Requirements. Develop the specification for the over-
all safety function requirements.

Stage 5. Safety Requirement Allocation. Determination of how a safety
function is to be achieved and allocate a SIL to each safety function.

Stage 6. Overall Operation and Maintenance Planning. Developing a plan of
for operating and maintaining the E/E/PE safety related systems so the
safety system operates correctly. 

Stage 7. Overall Safety Validation Planning. Developing a plan for validating
the safety system. 

Stage 8. Overall Installation and Commissioning. Developing a plan to ensure
the safety system is correctly installed and operational.

Stage 9. E/E/PE Safety System Realization. Create the E/E/PE safety system
that conforms to the safety requirements specification. 

Stage 10. Realization of safety systems implemented in other technologies. Creation
of non P/E/PE safety systems. This stage is not part of IEC61508.
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Stage 11. Other Risk Reduction Factors. Again not part of IEC61508.
Stage 12. Overall Installation and Commissioning. Based on the plans from

Stage 8.
Stage 13. Overall Safety Validation. Based on the plans from Stage 7.
Stage 14. Overall Operation, Maintenance and Repair. This covers the

majority of the plant life. The safety systems should be operated,
maintained and repaired in such a way that their integrity is ensured.
This will be based on the plans from Stage 6. 

Stage 15. Overall Modification and Retrofit. Plant modifications and changes
are a very dangerous operation, see the earlier HSE study in Out of
Control. Flixborough and Chernobyl originated because of poorly thought
out maintenance work. If any maintenance work or plant changes have
safety implications the safety life-cycle procedure should be repeated. 

Stage 16. De-commissioning. Ensuring that the functional safety of the
E/E/PE safety related system is appropriate for the final shut down and
disposal of the EUC. 

IEC61508 also imposes some system architectural constraints. The
most important of these is that the safety system and the control system
should be separate. This is normal in most PLC based systems where
safety devices such as Emergency Stops or guards operate directly into the
actuators. It can, though, be more difficult in a complex petro-chemical
plant where a controlled shutdown sequence is required.

Another important architectural constraint is the failure mode of
devices and the probability of ‘safe failure’ must be considered. For
a cooling water modulating valve a safe failure is a failure to close. For
a fuel control valve a safe failure is a failure to open. Tables in IEC61508
relate the required SIL and the probability of safe failure to the required
level of redundancy. For example, with a required level of SIL-2 and a
probability of safe failure of less than 0.6 for a safety related actuator,
dual redundancy is mandatory even if the calculated SIL is adequate.

IEC61508 also emphasizes the need for quality in the design procedure
and quality of the component parts. Needless to say the people concerned
should be knowledgeable and competent.

8.3 Design criteria 
In Chapter 3 the problems of defining what functions a PLC system is
to perform were discussed. In this section we will consider similar points
that have to be established for the PLC hardware.

The first (and possibly most important) of these is to establish the
amount of I/O (how many digital inputs, how many digital outputs, etc.)
and from this determine how many cards are needed. This can be sur-
prisingly difficult, as it depends very much on the user’s requirements.
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Consider, for example, a simple hydraulic pump started and stopped
from a main control desk. At the simplest level this requires one PLC
input (the desk run switch) and one output (the pump contactor). With
pushbuttons, desk lamps and useful diagnostics this could rise to eight
inputs (start PB, stop PB, contactor auxiliary, trip healthy, emergency
stop healthy, local isolator healthy, MCC on, hydraulic pressure switch
and five outputs (the pump contactor plus indicators for running,
stopped, tripped, fault, not available). The designer needs to know the
point between these two extremes that the user expects. I much prefer to
connect to everything that is available and then decide later whether it is
to be used. Adding ‘forgets’ in later is messy and expensive. (‘We’ve just
decided it would be useful to know when a motor is tripped’ says the
user. ‘There are 47 motors, no spare contacts on the overload relays in
the MCC and no spare I/O in the PLC, and we want to start testing
tomorrow.’) Avoid problems like this. 

The I/O is not simply the number of signals divided by the number of
channels per card. It helps maintenance to group functions by card;
Figure 8.20 shows a typical example. PLC cards have LEDs showing
signal status and with sensible I/O allocation readily identifiable ‘patterns’
can be established which assist fault finding. 

Figure 8.20 Sensible allocation of I/O aids fault finding. It can readily 
be seen that the lube pump has tripped and the E stop is pressed 
on the vault fan
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This functional grouping also generates useful spare I/O. A PLC
system should never be built without spare I/O (and never installed
without the ability to expand). If the project is well documented and the
user trusted implicitly, 10% installed spare I/O may be feasible. If there
is no real written specification, 50% installed spare I/O is not unreason-
able. Inputs and indicator lamps have a tendency to appear magically
from out of nowhere, so be prepared. 

Cabling is a major capital cost, and can be significantly reduced by
the use of remote I/O which is connected via simple coaxial or twin-
axial cable. The geography of the plant should be studied to establish
where I/O can be clustered to minimize cabling. Desks, for example, can
often be built with integral I/O cards only connecting to the outside
world via the remote I/O cable, a power supply and a few hardwire
signals such as emergency stop buttons. Such an approach allows useful
offsite testing before installation. 

8.4 Constructional notes 
8.4.1 Power supplies 

A PLC system obviously requires a power supply to operate. This will
usually be a low voltage; 110V AC is probably the commonest in
industry. If at all possible, an entire system should be fed from one
common supply. If separate supplies are used, any noise spikes on one
supply can cause momentary loss of communication between different
parts of the system and result in mysterious shutdowns. With a common
supply, all component parts experience the same effects and are more
tolerant of noise. 

In each cubicle, a power supply distribution system similar to
Figure 8.21 will be needed. It can be seen that this feeds several different
areas, each requiring breakers, or fuses, for protection. 

The PLC racks and processors obviously need a supply, and this
should be clean and free of noise to prevent unexplained trips. Until
recently, it was common practice to use constant-voltage transformers
(CVTs) to give a smooth clean supply for the PLC power supplies.
These act as a block to high-frequency noise on the supply. Unfortu-
nately they also block high-frequency loads from the supply, and can
give some very odd results with switched-mode power supplies. If the
PLC is to work off a potentially noise-prone supply (on a 110-V supply
derived direct from the bars of an MCC, for example) CVTs should be
considered. CVTs have a very high inrush current, which results in
higher rated upstream protection and cables than might be first thought.
In-line filters are also useful, but these also are prone to odd effects with
switched-mode power supplies.
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In Figure 8.21 a single emergency stop relay has been used. This
removes all power to output cards in slot 0 and disables one output in
slot 1. If this latter arrangement is used, snubbers should be put across
the load and/or the contact to reduce the inductive voltage spike as the
contact opens. This voltage spike can be a major source of electrical
interference and can even cause damage to the PLC output transistors
or triacs.

It is good practice to have independent protection for each output
card as shown. This limits the affected area in the event of any external
fault, and aids fault finding by locating the problem to outputs connected
to one card. Usually PLC output cards have their own internal protection,
often at the level of one fuse per output (with a common fuse blown
indicator). Often each output supply is fed back as an input to allow the
PLC to check the supply state and give an alarm when a blown fuse or
tripped breaker occurs. 

With inputs there are two possible protection methods. In the first all
inputs for one card are fed from the same breaker. This means that
a card can be isolated at one point (but has the disadvantage that several
different supplies may exist inside a desk or junction box). With the
second approach, every point at one location is fed from a common
supply. This has only one supply at a location (allowing isolation of
several limit switches at one breaker) but means that a single card is fed
from many different supplies. The author prefers the second scheme but
this is only a personal opinion. 

During commissioning, maintenance and fault finding, it is often use-
ful to be able to shut down outputs or inputs whilst leaving the system
running. Switches, breakers or fuses on Figure 8.21 allow this isolation
to be performed. 

A cubicle often contains non-PLC devices, 24-V power supplies,
instruments and chart recorders. These also need individual protection.

Finally we have two often-overlooked essential supplies. Cubicle
lighting and sockets for the programming terminal and tools such as
a soldering iron can aid commissioning and fault finding. The author
always includes a standard 15-A and 5-A 110-V socket in every
cubicle.

It would obviously not be desirable to have the whole PLC system
shut down by a simple fault like a stuck AC solenoid (which produces
a high current) tripping the main breaker. A hierarchy such as that of
Figure 8.21 needs discrimination between the various protection devices
to ensure that a breaker trips or a fuse blows at only the lowest level.
This is a complex subject, but as a rough rule the rating of the protection
should be between five and ten times the rating of the protection at
the next lowest level. Remember that the protection is for the cable, not
the device it is connected to. 
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Figure 8.21 Typical cubicle power distribution for the ‘dirty’ plant signals. The PLC processor will be fed from its own 
separate ‘clean’ supply. It helps system recovery after a power outage if all the processor and racks are fed from the 
same supply, albeit via individual protection. The cubicle and plant wiring should follow the appropriate electrical safety 
regulations (e.g. for safety earths) 
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A supply hierarchy needs sensible labelling. The author uses a
scheme with each level adding a one-digit suffix: 

L
L1 L2 L3 

L11 L12 L13 L21 L22 L31 L32 L33 
L131 L132 . . .

In this way the origin and route of any supply in the system can be
quickly determined. 

One common source of trouble is centre-tapped supplies (55/0/55 is
often used). Although these reduce the voltage from any point to earth,
they complicate fault finding and can bring increased danger if not properly
installed. Protection in each leg (two pole breakers or two fuses), is needed,
not just in the supply line. The author once nearly burnt out a cubicle
which was connected to a 55/0/55 supply via a single pole breaker. 

The relative merits of fuses and breakers are often discussed. Certainly
DIN rail-mounted breakers simplify fault finding and maintenance, and
a fault does not necessitate a trip to the stores to get a pocketful of fuses.
If fuses are used, indicating holders should be used to allow a blown
fuse to be quickly located. Standardization of fuse dimension in a par-
ticular area should be specified. There are few things more annoying
than a cubicle equipped with different lengths of fuse in what appear to
be identical holders. 

Earthing is important for safety and reliable operation. There are
many separate earths, typically: 

(a) safety earths for cubicle, desks and junction box frames 
(b) dirty earths for antisocial high current loads such as inductive

relay and solenoid coils 
(c) clean earths for low current signals 

These should meet at one, and only one, common earth point to prevent
earth loops (the connection of the screens on analog cables was discussed
in Section 4.12). Where items such as PLC racks are mounted on the
backplane of a cubicle, earthing via the mounting screws should not be
assumed, and earth links should be added. 

All supply wiring should be installed to local standards. In the United
Kingdom these are the wiring regulations of the Institute of Electrical
Engineers (IEE). This is currently at the 16th Edition. 

8.4.2 Equipment protection 

The designer must build the PLC and its associated equipment into a plant.
To achieve this, cubicles, junction boxes and cabling are needed.
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The cubicles serve to protect the PLC from the environment (notably
dust and moisture), to deter unskilled tampering and separate dangerous
voltages from production staff. The protection given by an enclosure is
given by its IP number (for ingress protection). This is a two-digit number;
the first digit refers to protection against solid objects, and the second to
protection against liquids. The higher the number, the better the protection,
as summarized in Table 8.5. Some IP numbers have commonly used
names, but these have no official standing: 

IP22 Drip-proof 
IP54 Dust-proof 
IP55 Weatherproof 
IP57 Watertight 

Most industrial applications require IP55, even if used indoors (but it
should be remembered that IP55 is only IP55 with the door closed). 

High ambient temperatures can often be a problem, and it is always wise
to check what dissipation is expected inside a cubicle. Manufacturers give
figures for their PLC equipment (these are generally low) but devices such
as transformers (particularly CVTs) can generate a fair amount of heat.

For a standard cubicle, 5 W per m2 of free cubicle surface will produce
a temperature rise of 1 °C. For example, 400W dissipation in a cubicle of
5 m2 free surface area will give a temperature rise of about 16 °C inside
the cubicle. The base and any sides in close proximity to walls should
be ignored in calculating the free area. 

If the elevation from this calculation above the expected highest
ambient exceeds the manufacturer’s maximum temperature specifica-
tion (usually around 60 °C), cooling will be needed (or a larger cubicle).
Recirculatory coolers as in Figure 8.22 allow around 100W for a 1 °C
rise per m2 of free surface. In extreme cases, refrigeration can be used.

Figure 8.22 Recirculatory cooler. Air flows are fan assisted 
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Table 8.5 Ingress protection (IP) rating

Common ratings are IP11, IP21, IP22, IP23, IP44, IP54, IP55.

Solid bodies Liquids 

First 
number

 Second 
number

 

0 No protection 0 No protection 

1 Protection against 
large solid bodies. 
Hand cannot come 
into contact with 
live parts 

1 Drops of 
condensed 
water falling on 
enclosure shall 
cause no harm

2 Protection against 
medium solid bodies. 
Fingers cannot 
come into contact 
with live parts 

2 Falling liquid 
shall have a 
harmful effect 
up to 15° from 
vertical 

3 Protection against 
objects >2.5 mm 
diam. Tools (e.g. 
screwdrivers) cannot 
contact live parts 

3 Falling liquid shall 
have harmful 
effect up to 60° 
from vertical 

4 Protection against 
objects >1 mm 

4 Protection 
against 
splashing from 
any direction

5 Totally enclosed. 
Dust may enter 
but not in harmful 
quantities 

5 Protection against 
hose pipe water 
from any direction. 
Water may not 
enter in harmful 
quantities 

6 Dust may not 
enter. Total 
protection 

6 Protection 
against conditions 
on ships’ decks. 
Occasional 
immersion. Water 
must not enter 

– – – 7 Permanent 
immersion up to 
1 m. Water must 
not enter 

– – – 8 Permanent 
immersion to 
specified depth 
and for pressure
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In either case, an overtemperature alarm should be fitted for protection.
Heat-sensitive paints or stickers are also useful for monitoring temperature.

There are two ways in which terminal strips can be laid out. In
Figure 8.23(a), the terminal strip has been grouped by plant side cabling
(with unused I/O being placed together at the end of the terminal strip). In
Figure 8.23(b), the grouping is by PLC I/O, which leads to splits in the

Plant cabling
Terminal
strip

PLC
rack

Signals from
one card

I/O arranged on terminal strip
by plant wiring

(a)

Plant cabling

Terminal
strip

PLC
rack

(b)

Figure 8.23 PLC plant I/O connections: (a) cabling by plant I/O; 
(b) cabling by PLC I/O
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plant cabling. Of these, the author much prefers the second arrangement.
To achieve the first successfully, all plant I/O and cabling must be known
exactly before construction starts, and any (inevitable) late changes will
split the external cables anyway. With Figure 8.23(b), construction can start
once the quantity of I/O is known (without knowing its allocation) and the
arrangement is clear and self-explanatory. For later modifications, unused
I/O is clearly visible. Whichever scheme is used, all installed I/O should
be brought out to the terminal strip whether it is used or not; 2.5-mm2

cable added to a card by a shift electrician at 3 a.m. looks distinctly
unsightly in comparison to 0.5-mm2 looms installed by a panelbuilder.

The supply requirements of the outside plant should be provided at
the terminal strip. Figure 8.24 shows recommended arrangements for
an 8-bit output and 8-bit input card. This is straightforward; the only
point requiring comment is the neutral for the input card, which allows
easy monitoring with a meter at a plant-mounted junction box. 

Terminals allowing local disconnection of a signal are very useful for
commissioning and fault finding. The cubicle in Figure 8.25 uses Klippon
SAKR disconnect terminals. These allow the cubicle to be powered up
for initial testing with the plant totally disconnected, and then areas can
be brought in step by step. A similar, but less controlled, approach is to
drop all PLC I/O card arms off the card on first power-up and replace
them one at a time. 

Figure 8.25 also shows the importance of ferruling. This is essential
both for installation and maintenance. All cable cores on a PLC-based
system should be ferruled in a way that relates to the PLC addressing
(so if you are working on a solenoid you can see immediately it is bit 05
of card 3 in rack 4). Typical ferrule systems are: 

• 12413 input bit 13 of slot 4 in rack 2 on an Allen Bradley PLC5 
• A02/12 input bit 12 of word 02 in a GEM-80 
• Q63/6 output bit 6 in byte 63 in a Siemens S5 

Ferruling is expensive; in the author’s experience it costs as much in
labour to ferrule a multicore cable as it does to pull and install it. The
costs can, however, be recovered at the first major fault. A recent devel-
opment is computer-generated ferrules, also shown in Figure 8.25. 

A useful, and for once inexpensive, aid is to colour-code cores inside
a cubicle according to their function. An example is the following: 

Supplies (AC and DC) Red 
Returns (Neutral and DC –) Black 
AC Outputs Orange 
AC Inputs Yellow 
DC Outputs Blue 
DC Inputs and analogs White 
Isolated outputs and non-PLC Violet 
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The colour coding helps cable location and gives a useful last-minute
confirmation that a signal being added during later plant modifications
are of the correct signal type for the card (connecting a 110-V AC
supplied limit switch to an input card wired in the cubicle with white
cores is wrong). 

Terminals should have no more than two cores connected, and ideally
two cores per terminal should only occur where a linking run is being
formed. In a really perfect world, linking bars should be used. Cores

Figure 8.24 Wiring cards to terminal strips: (a) input card; (b) output card
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should have crimped ends (called bootlace ferrules) as in Figure 8.25 to
prevent problems from splayed ends. 

8.5 Maintenance and fault finding 
8.5.1 Introduction 

It is the designer’s duty to ensure that in all new plant: 

1 There is at least one item which is experimental. 
2 There is at least one item which is obsolete. 
3 There is at least one item on six months delivery (and this is the one

item which has not been placed on stores stock). 
4 The drawings do not include site or commissioning modifications. 

Perhaps not, there must be a better way. 
When a project is completed, the plant becomes the responsibility of the

maintenance staff, who always lead a difficult and unappreciated life.
They do not really share in the glamour and glory of the new plant, and
inevitably get blamed for all the designer’s mistakes that do not become
apparent until the plant has been in production for a few months. 

Production management view maintenance staff as a necessary, and
expensive, evil and often express a plant goal of zero fault time. Absolute
zero lost time is unachievable, but practically any desired finite level of

Figure 8.25 Plant connections inside a cubicle. Note the clear ferruling 
(computer generated with package from Murrelektronic), the use of 
SAKR terminals to allow isolation and bootlace ends to prevent stray 
wires 
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reliability can be achieved. Surprisingly, this may not be what is really
required. 

Low reliability is achieved at low cost, but brings high cost in lost
production. As reliability increases, the maintenance costs increase but
the production costs fall. Eventually a point is reached where an
increase in reliability requires an increase in maintenance costs that
exceeds the benefit in reduced production costs, giving curves similar to
Figure 8.26. The ‘art’ of maintenance is to identify, and work at, the
point of minimum cost. 

This is assisted by designing a plant so it is, to some degree, failure
tolerant. Most plants operate in some form of failure mode for a high
percentage of the time. Good plant design considers the effect of failures,
and provides methods to allow a plant to continue operating economically
and safely whilst a fault is located and rectified. 

8.5.2 Statistical representation of reliability 

It is not possible to predict when any one item will fail, so statistical
techniques are used to discuss reliability. The reliability of an item, or
a complete system, is the probability (0 to 1) that it will perform correctly
for a specified period of time. A PLC rack, for example, may have
a 0.98 probability of running two years without failure. 

Reliability measurements are based on a large number of items. If N
items are run in a test period, and at the end of the test Nf have failed,
and Nr are still working, the reliability R is defined as

(8.1) 

and the unreliability, Q , is defined as

Figure 8.26 The financial implications of reliability 

R =
Nr

N
----- =

N Nf–
N

---------------
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(8.2)

Obviously Q + R= 1.
Reliability is expressed over a period of time (1000 hours, 1 year,

10 years or whatever). An alternative measure is to give an estimate of
the expected life expectancy. This is given by the mean time to failure
(MTTF) for non-repairable (replaceable) items like lamp bulbs, and
mean time between failures (MTBF) for repairable items (or complete
systems). Both of these are again the statistical result obtained from tests
on a large number of items. 

When equipment fails, it is important that it is returned to a working
state as soon as possible. The term ‘maintainability’ describes the ease
with which a faulty item of plant can be repaired, and is defined as the
probability (0 to 1) that the plant can be returned to an operational state
within a specified time. 

Mean time to repair (MTTR) is another measure of maintainability,
and is defined as the mean time to return a failed piece of equipment to
a working state. Like MTTF and MTBF it is a statistical figure based on
a large number of observations. 

Maintainability is determined both by the designer and the user.
Important factors are as follows: 

1 The designer should ensure that faults are immediately apparent, and
can be quickly localized to a readily changeable item. This requires
good documentation, sensible test points and modular construction.
We will return to these points later. 

2 Vulnerable components should be readily accessible. It is not good for
maintainability if the maintenance electrician has to climb a 10-m ladder
and remove a cover held in place with 16 screws to reset a tripped
breaker. 

3 The maintenance staff should be competent, well trained and equipped
with suitable tools and test equipment. MTTR is obviously related
to how long they take to respond to a fault. 

4 Adequate spares should be quickly available. MTTR will be increased
by laborious stores withdrawal procedures. MTTR is usually
reduced if a policy of unit replacement rather than unit repair is
adopted.

Of these, the designer has responsibility for points (1) and (2) with the
user being responsible for points (3) and (4). 

Plant availability is the percentage of the time that equipment is func-
tional, i.e.

Q =
Nf

N
----- =

N Nr–
N

----------------
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(8.3)

where MT is scheduled maintenance time. 
If N components are in operation, and if Nf components fail over time

t, the failure rate λ (also called the hazard rate) is defined as

(8.4) 

(Strictly, Nf and T should be defined as incremental failures ∆Nf over
time ∆T as ∆T tends towards zero.) 

The failure rate for most systems follows the ‘bathtub curve’ of
Figure 8.27. This has three distinct regions. The first, called ‘Burn in’ or
‘Infant mortality’, lasts a short time (usually weeks), and has a high
failure rate as faulty components, bad soldering, loose connections, etc.
become apparent. At the systems level the designer’s mistakes and software
bugs will also be revealed. 

During the centre ‘Maturity’ region a very low constant failure rate
will be observed. In a well-designed system maturity normally lasts for
years. The final period, called ‘Senility’, has a rising failure rate caused by
structural old age; oxidizing connectors, electrolytic capacitors drying out,
plugs losing the spring in their contacts, breaks in printed circuit board
tracks caused by temperature cycling and so on. At this point replacement
is normally advisable. 

In the ‘Maturity’ stage, it can be shown that

Availability = Functional time
Total time

--------------------------------------

=
Uptime

Uptime + Downtime
--------------------------------------------------

= MTBF
MTBF + MTTR + MT
----------------------------------------------------------

λ = 1
N
----

Nf

T
-----×

Figure 8.27 The bathtub curve 
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(8.5) 

depending on whether the item is repairable or replaceable, and the
probability that an item will run without failure for time t (i.e. its reliability
for time t) is:

(8.6)

If, for example, a system has a MTBF of 17500 hours (about two years),
the probability that it will run for 8750 hours (about one year) is

R = exp(−8750/17 500)
�0.6

8.5.3 Maintenance philosophies 

Even with the best-planned preventative maintenance procedures, faults
will inevitably occur. There is a fundamental difference between a prob-
lem on a complex PLC system and, say, a mechanical fault. In the latter
case the fault is usually obvious, even to non-technical people, and the
cause can be quickly identified. Usually mechanical problems take a long
time to repair. 

PLC-related problems tend to be more subtle, as far more components
are involved. If some actuator does not move, it could be a bug in the
PLC program, the PLC itself, an output card fault, the output supply,
the actuator or some related part of the sequencing; a limit switch per-
mitting movement having failed, for example. Diagnosis can thus take
some time, and whilst it is possible to find a fault eventually by random
component changing, a logical fault-finding procedure will shorten the
time taken to locate the fault. Once the cause is found, the repair is usu-
ally quick and straightforward. Admittedly this broad view is difficult to
maintain at 3 a.m. with the shift manager asking the three inevitable
questions ‘Do you know what’s wrong?’, ‘Do you think you can fix it?’
and ‘How much longer is it going to take?’ 

The reliability of modern equipment creates problems for the main-
tenance staff. With MTBFs measured in years it is likely that a technician
will only encounter a piece of equipment for the first time when the first
fault occurs (and the maintenance manuals and drawings have been lost
or are gathering dust in the chief engineer’s bookcase). More reliable
equipment also means that a technician can cover, and hence needs to
know about, a much larger area of plant. Training is therefore essential,
and we will shortly return to this subject. 

λλλλ = 1
MTBF
----------------- or λλλλ = 1

MTTF
------------------

R = e λλλλ– t
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Fault finding can be split into first-line maintenance (repairs carried out
on site, usually module or unit replacement) and second-line maintenance
(repairs carried out to component level in a workshop). In either case it
is a logical process which homes in on the fault as shown in Figure 8.28.
Symptoms are studied and from these possible causes are identified. Tests
are conducted to confirm or discount the possible causes. These tests
give more information which allows the possible causes to be narrowed
down until the fault is found. 

One of the arts of fault finding is balancing the probabilities of the
various possible causes of a fault against the time, effort and equip-
ment needed to perform the tests required to confirm or refute them.
Figure 8.29 shows the probability of failure of the different parts of a
typical PLC system, which, not surprisingly, shows that 95% of ‘PLC’
faults actually occur on the plant items such as actuators and limit switches.

Good equipment design should provide diagnostic aids so that the
most probable causes of faults can be checked out quickly without the
need of specialized test equipment. 

The final stages of Figure 8.28 are concerned with maintenance
management, and serve to analyse plant behaviour. Any shift-based
technician will only see a quarter of the faults, but a common fault-
recording system should reveal recurring failures or a need for training
in specific areas. 

Figure 8.28 The fault-finding procedure 
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8.5.4 Designing for faults 

All equipment will fail, and the designer of a PLC system should build in
methods to allow common faults to be diagnosed quickly. Simple ideas like
running the neutral out to a junction box for test purposes as in Figure 8.30
can save precious minutes of time at the first fault. Other simple and cheap
ideas are the use of isolating terminals (such as the Klippon SAKR shown
earlier in Figure 8.25) and the provision of monitoring lamps on critical
signals (particularly local to hydraulic and pneumatic solenoids). 

Consider a simple motor starter; at the simplest level this requires two
inputs (start and stop buttons) and one output (the contactor) but in the
event of a fault shift electricians will have to rely on their own judgement
and ideas. With five additional inputs, and three outputs for lamps, much
more information can be given and the MTTR reduced. Table 8.6 will
cover all common motor faults.

To this should be added an ammeter to allow the motor current to be
monitored (and compared against the normal current which all careful

Figure 8.29 Failure distribution in a typical PLC system. Despite only 
5% of the faults being related to the PLC itself, every one goes on record 
as a ‘PLC fault’, of course 

Figure 8.30 Assisting fault finding by running redundant neutral to 
junction box 
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engineers record before the first fault). With the above list, the PLC can
localize the fault and identify the possible cause through the program-
ming terminal. With VDU screens, full operator messages can be given
(‘Pump 1 cannot start because the local isolator is open’ or ‘Conveyor 1
stopped, PLC is energizing the contactor but the auxiliary contact has
not made’). 

Great judgement is needed with alarms, and an alarm should always
mean something. Care should be taken with ideas like that in Figure
8.31 which are often used to check actions, typically an alarm condition
being ‘If extend is called and LS2 does not make within 2.5 s signal
Extend Fault’. These ideas can be very useful, but the alarm detection
devices (LS1 and LS2 in Figure 8.31) need to be significantly more
reliable than the device they are monitoring. If not, false alarms will
result and the user’s confidence will be lost. There is little worse in
maintenance than seeing a plant running with half a dozen alarm
messages on the screen and the operator saying ‘Oh, ignore them,
they’re always coming up’. If they are ignored, make them reliable or
take them out.

The PLCs themselves provide useful diagnostics of their own, and
the plant’s performance. Figure 8.32 shows the processor diagnostic
page for a PLC-5.

Table 8.6 Common motor faults

Inputs Outputs 

Start PB Running lamp
Stop PB Stopped lamp
Contactor auxiliary contact Fault lamp 
Contactor trip healthy 
Local control supply healthy (i.e. MCC is on)
Emergency stop healthy 
Local isolator healthy 

Figure 8.31 Monitoring plant operation with additional devices 
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8.5.5 Documentation 

PLC systems tend to be both complex and reliable, two features that
work against the maintenance staff, who do not have the chance to
build up experience of common faults. The maintenance technicians
will therefore have to rely on the documentation to help locate the fault. 

Figure 8.33 is a common drawing, familiar to most engineers, of a car
wiring diagram. The drawing has been produced for constructional
purposes and is of little use for fault finding. Redrawing it as Figure
8.34, with the drawing laid out by function not location, and a logical
flow of signals from left to right, produces documentation which can be
used for fault finding. 

Figures 8.33 and 8.34 illustrate a common failing. There are two dis-
tinct types of drawing. The first is produced by the designer to construct
and interconnect the plant. These drawings are essential for the initial
construction, but are of little subsequent use unless there is a major disas-
ter (like a fire). These drawings tend to be of a locational nature or panel
orientated as in Figure 8.35, which is an extract from the drawings of
a typical PLC system. Often such drawings are all that is available,
making fault finding a difficult task. 

Fault finding requires drawings which group information by a function
whilst retaining enough locational information to allow signals to be
traced. Figure 8.36 shows the information in Figure 8.35 redrawn to
assist fault finding. 

Figure 8.32 PLC-5 diagnostic page as shown on the programming 
terminal. Fault bits appear in minor/major fault words and are 
accompanied by text descriptions to the right of the word F1–F10 are 
soft keys on the programming terminal; lostat, for example, shows the 
state of the I/O racks 
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Unfortunately designers and manufacturers often only provide con-
structional and locational drawings, making the task of maintenance
personnel more difficult than it need be. Ideally both types of drawing
are needed.   

Drawings should also indicate the sense of signals. Given Figure 8.37(a)
(which is based on a real manufacturer’s drawing of a hydraulic tank)

Figure 8.33 A typical car wiring diagram with which most people 
are familiar. It emphasizes spatial relationships in that the layout of 
components follows, to some extent, the physical arrangement in 
the car. This results in the diagram having a large number of wiring 
crossovers and parallel runs, and a lack of any ‘direction’ or functional 
flow. In consequence it appears cluttered and is difficult to follow
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Figure 8.34 Car wiring diagram redrawn to show functions
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what would you expect to see for normal level (and in the absence of
a neutral or DC – in the junction box, how would you check it)? Simple
pictograms such as Figure 8.37(b) or pure text like ‘Contacts all made
in normal operating condition. High level opens for rising level, low
level opens for falling level’ can save precious minutes of time at the
first fault.

PLC programs can normally be documented, with descriptions attached
to instructions and rungs/logic blocks. These are vital for easy fault
finding. Figures 8.38 and 8.39 are the same part of a program in raw
and documented form. The difference for ease of fault finding is
obvious.

Most engineering organizations are fairly meticulous about keeping
records of drawing revisions and dates of changes (e.g. drawing 702-146
is on issue E revision date 25/2/98). PLC programs are easy to change

Figure 8.35 Drawings as normally provided for maintenance. These are 
constructional drawings. (a) Part of drawing of PLC cubicle. (b) Drawing 
of local control station. (c) Drawing of starter panel. (d) Cable schedule 
(one of four needed for fault finding)
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Figure 8.36 Information from Figure 8.35 redrawn for fault finding 

Figure 8.37 The need for maintenance-friendly drawings.
(a) Cabling information for level switches; the operation is unknown.
(b) Simple pictograms clarify operation

075065757X-ch008.fm  Page 343  Saturday, June 28, 2003  5:02 PM



344 Programmable Controllers

on site, and most companies are very lax about keeping similar control
of PLC programs. Figure 8.40 illustrates a common sequence of events.
Such clashes can be difficult to resolve, particularly if the Maintenance,
Shift and Design Engineers have used the same addresses for different
functions.

Figure 8.40 arises out of ‘bottom drawer’ copies of PLC programs.
These should be avoided at all costs. There should be a central store
and records plus one (or one plus backup) for reload on site. There
should be a recognized procedure for making changes, and a copy of
the program taken before the changes are made so that there is a way of
undoing the changes if there are unforeseen side effects. PLC programs
should be treated as plant drawings and subject to the same type of
drawing office control. 

8.5.6 Training 

Knowledge of a system is obviously required for fault finding. With any
complex control system, this knowledge falls into two parts. First is
familiarity with the equipment, the PLC, the thyristor drives, the sensors
and actuators on the plant. Without this basic knowledge there is little
hope of locating a fault. Most plants acknowledge the need for this type
of training.

Figure 8.38 An undocumented PLC printout 
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The second part is usually overlooked. It is necessary to appreciate
how these various building blocks link together to produce a complete
system. Too often the first-line maintenance engineer gets sent on a PLC
course, a thyristor drive course and a hydraulics course, and is told
‘OK, you’re trained, now look after the Widget Firkilizing Plant’. 

Such an approach has real dangers. When a fault occurs, maintenance
technicians usually approach it in two stages. Initially, when first called,
they are keen and eager to find the fault. If they do not succeed in a short
time, they slip into the second stage where they are more concerned about
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self-image and not looking a fool than in really finding the fault (and will
stay in this mode of operation until the reinforcements arrive). It takes
courage to say: ‘Sorry I’ve not got the vaguest idea, send for help’. If
technicians working in this mode have just come back from a course on
servicing the instrument air compressor they will automatically head for
the nearest air compressor and service it. 

Consider the following true story. Somewhat simplified in Figure 8.41,
an item of plant has X and Y movements of an arm under control of
a PLC. The vertical, Y, movement is driven by an electric motor with
a non-reversible gearbox, and the horizontal movement by a hydraulic
cylinder controlled by proportional valves. The X and Y movements
(of around 750 mm) are measured by linear potentiometers. In the
night, with the plant not in production, the night shift changed one of
the vertical chains but did not check the action of the ultimate limits
(linked to strikers on the chain wheels which rotate through about 300
degrees).

As part of its sequence, the PLC drives the arm to a fixed Y position
then fully extends the cylinder. At the start of the next day’s production,
the carriage moved in the Y axis until the (incorrectly aligned) ultimate

Running
PLC program

Maintenance
Engineer takes
copy, makes
offline changes

Design Engineer
makes online
changes

Downday:
Shift Engineer reloads,
wiping out Design
Engineer’s changes. Startup
delayed whilst resolved

Downday:
Maintenance Engineer
reloads, wiping out
Design Engineer’s and
Shift Engineer's changes.
Confusion!

Shift Engineer
takes copy, makes
offline changes

Figure 8.40 The road to confusion; the result of unofficial program 
copies 
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limit operated, then the system froze. The PLC had not achieved the Y
position, so it did not operate the X cross-travel. 

The operators summoned the maintenance crew, informing them
that the X motion was not working (a misleading statement which was
taken at face value). Fresh from a course on proportional valves, the
crew started stripping down the X motion hydraulics. 

The people concerned had been trained in the basics, and were not
stupid or bloody minded. The incident raises several important points.
When the fault occurred, there had been no training in the machine’s
operation, so the steps of the sequence were not clear to the maintenance
staff. Proportional hydraulic valves had been hammered into them, and
this training had produced an attitude of ‘With all faults, it must be the
proportional valves’. It is, perhaps, significant that at no stage did anyone
use the programming terminal to look at what the PLC was trying to
do, or even try operating the machine in manual. A related, but separate,
issue was the fact that the fitter who changed the chain in the night did
not realize that this action could affect the setting of the ultimate limits.

To some extent, this incident arose from job demarcation. The author’s
plant is pioneering an electro mechanical production (EMP) worker who
will cover all aspects of a job and avoid informational difficulties similar
to that described above. This requires extensive training and involvement
from all employees at all levels.

Other issues that the reader might like to consider are how the system
designer can help avoid informational lapses like this. Note that there
are space and financial limitations on how far you can go. 

Figure 8.41 A plant which revealed training needs 
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The important lesson, though, is that maintenance staff must know
the plant, know its operation and be familiar with the documentation.
With PLC-based systems, a talk through the PLC program is essential,
drawing attention to what is needed for certain actions to take place.
Knowledge of the plant is probably more important than knowledge of
the internals of the PLC itself, as over 95% of the faults will occur outside
the PLC cubicle (see earlier Figure 8.29). 

Too often, the first time a maintenance crew sees a new plant properly
is on the first fault (when the design team are off on the next job). The
time to learn about a plant is when it is being built and when it is being
tested and commissioned. All the problems, wrinkles and fixes will be
learned then, and the location of all components fixed in the mind. It is
an invaluable experience which cannot be repeated. 

8.5.7 Fault-finding aids, EDDI and FlMs 

The difficulty in the previous section could have been prevented by the
addition of two indicator lamps driven by the program as shown in
Figure 8.42. This raises the obvious question of how much diagnostic
aid the PLC itself can give. 

Certainly the PLC is capable of signalling any conditions of which it is
aware (and the PLC of Figure 8.41 certainly knew what was going on). The
difficulty comes with examples like Figure 8.43 which is a by no means
exaggerated example for one hydraulic pump which has 12 conditions
that can prevent it from starting. To cover these would require 12 lamps
driven by 12 outputs and fed down 12 cores of expensive cable (and 12
indicator rungs compared to two actual plant rungs), all for one pump.

Figure 8.42 Two rungs which would have helped Figure 8.41. In 
accordance with good practice, the ultimate limit signal is a second 
contact on the limit switch which opens when struck 
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At the design stage there is a fine balance between annunciating every
possible alarm, and annunciating none, with the split being made based
on experience of likely faults. One could treat Figure 8.43 with two
lamps saying ‘Available’ and ‘Start Inhibited’, leaving the faultfinding
crew to find the detailed reason for ‘Start Inhibited’ either by the PLC
programming terminal (which shows directly the cause) or via a check
list (provided as part of the plant documentation) which can be followed
on the indicators on the PLC input cards. For example: 

If Pump start is inhibited, check the following inputs are healthy: 
Tank Oil Low Level A3.2 
Inlet Valve Open A3.3 
Outlet Valve Open A5.1 

etc. 

There are more solutions when graphics-based workstations are used,
and a graphic representation as in Figure 8.44 can be used to show the
state of every signal the PLC uses in a relevant place. Significantly such
displays take little or no PLC program with, say, the level indicator
linked to the state of the level switch and displayed in green or red. 

Figure 8.43 A by no means unusual program for a hydraulic pump
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The graphical displays do, however, take time to build (the most valuable
commodity of all). 

Most PLCs allow the user to ‘force’ input and output signals to a
required state with a programming terminal. A faulty limit switch, for
example, can be forced on to allow a movement, or a motor started by
forcing its output on despite the absence of permit signals. 

This can be a very powerful aid in commissioning and testing, but
can easily become a standard way of working. A plant running with
forced PLC signals can behave in a mystifying way if the initiator is not
fully aware of what is being done and the possible consequences. It is
very easy to trigger some unexpected sequence of events by forcing a
limit switch or output signal to overcome some minor fault. Care and
thought are needed if forces are to be used safely and sensibly, and
forces should only be left for a short period of time. 

A plant should not rely on forces for normal working (if it does, the
plant is being operated in a risky state, or the original signals were not
needed and should be removed). 

Sequences (state diagrams, see Section 2.9.2) can cause major fault-
finding problems. With workstations, again, very useful displays such
as Figure 8.45 can be provided, showing what the machine is doing and
what transitional signals it is waiting for. 

The Ford Motor Company (a prolific user of PLCs) has defined a
standard way of programming sequences. It is known as Error Detection
and Diagnostic Indication (EDDI), and is a concept that covers not just
maintenance fault-finding display, but the whole way in which the
program is laid out, written and documented. It aims to have the same
maintenance team interface regardless of which type of PLC is used. 

In its simplest form, an EDDI system is built around a state-diagram-
based sequence (see Section 2.9.2) with a maintenance display similar to
Figure 8.46. The sequence is built up as matrix with the matrix row

Figure 8.44 Graphical representation of Figure 8.43
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being the step number, and the matrix column the conditions that have
to be met to form a transition to the next step. The seven-segment display
shows the current step number (or row) and the indicators the conditions
which are yet unfulfilled. If the system freezes due to a faulty input the
displays allow the fault to be quickly diagnosed. 

There is much more to the EDDI philosophy, though. The standard-
ization of how this is achieved, how the program is laid out and written,
what documentation is needed and how this is provided means that staff
can readily move between plants with little retraining. Standardization
of methods is important for easy fault finding. 

In the late 1960s the Royal Navy was concerned about the increasingly
complex nature of ship-borne equipment and the related maintenance
problems. A team at HMS Collingwood devised an approach called FIMS
for Functionally Identified Maintenance System. This is diagnostic docu-
mentation supplemented to the main constructional or functional drawings.

It is based on functional modules or blocks whose inputs and outputs
can be tested. These blocks are arranged in a hierarchy as summarized
in Figure 8.47. Each block represents one drawing on which the location
and state of test points can be found. Figure 8.48 shows part of a FIMs
scheme for a thyristor drive. The technician follows the hierarchy of

Figure 8.45 VDU screen monitoring a process. Data after the colons 
change according to the machine action 

Figure 8.46 EDDI matrix display and lamp markers 
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Figure 8.47 down until a replaceable module or card is reached (denoted
by a black marker in the corner of the block) or a simple circuit. A complex
system is thus broken down into blocks on which fault finding can be
carried out without prior experience of the plant. 

FIMs is not cheap, but in the author’s experience it works well on
complex plant. Its very nature imposes modular design at the early stages
(always a good idea) and ensures that maintenance is thought out at the
early stages. It can be difficult to apply to an already-built non-modular
plant. 

The HMS Collingwood team also devised the idea of the dependency
chart, shown in Figure 8.49. This shows the relationship between actions,
functions and event. The charts are used for fault finding by tracing

Figure 8.47 FlMs; functionally identified maintenance system: (a) a FlMs 
hierarchy; (b) top-level view of a power supply; (c) bottom-level view 
of F1
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a signal back through the chart. Action d, for example, requires function Z,
which in turn needs signals e, f and g. 

A common fault finding aid is the flow chart of which Figure 8.50 is
a common example. These are also known as symptom analysis charts,
or algorithmically based diagnostic charts. Their deficiency is that they
tend to only cover the simple obvious faults (that would have been
found anyway) and ignore the troublesome subtle faults. 

8.6 Electromagnetic compatibility (EMC) and 
CE marking 
Electronic equipment is vulnerable to electrical interference. A badly sup-
pressed motor car or poorly installed amateur radio transmitter, for
example, will have noticeable effects on a domestic television receiver. Similar
effects occur in industry, with power electronics systems or radio communi-
cation systems affecting low power or digital electronic circuits. The results
can be catastrophic; particularly with computer-based control systems. 

Figure 8.49 The dependency chart: (a) a simple system; (b) chart for the 
system in (a) 
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As part of the drive towards harmonization of European standards to
encourage trade across European frontiers, Directive 89/336/EEC
(amended by 92/31/EEG) provides standards designed to ensure that
equipment from different manufacturers may be used together without
problems from electrical interference between them. To achieve this, the
two aspects of Figure 8.51 must be defined. 

All electrical equipment causes emissions (often called ‘noise’). These
emissions can be high frequency (RFI, for radio frequency interference)
or at harmonics of mains supply frequency. The latter usually occurs
from power electronic systems such as thyristor drives. The noise can
radiate through the air, or be conveyed along power or earth cables.
Cable-borne noise can cause problems at several kilometres from the
source. Equipment meeting the directive must keep its emissions below
a defined level. 

Immunity defines how susceptible equipment is to external noise
from other equipment and the environment. Table 8.7 summarizes the
possible effects. Both radiated and line-borne noise must be considered.

Problems occur when one plant item’s emission level exceeds a local
plant item’s immunity level. In the domestic case of an amateur radio
transmitter causing television interference, the problem can be solved by
reducing the emissions from the transmitter, or increasing the immunity
of the television. The practical difficulty in industry is deciding which
route to take, and who is responsible. 

The directive aims to solve this problem by defining acceptable emis-
sion and immunity levels. With the defined emissions level below the
defined immunity level of Figure 8.51 a safety margin is formed which
ensures that problems should not arise. If there are noise effects the
offending items should be easily identifiable. 

Figure 8.51 EMC compatibility levels
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Table 8.7 Immunity tests

Phenomenon Simulating Point applied Form Possible outcome 

Electrostatic 
discharge (ESD)

Discharge from a person, 
common on dry days 

Controls and 
enclosure 

High voltage; several kV 
fast edge, low energy 

CMOS circuit failure 
Microprocessor crash 

RF field Local radio transmitter Enclosure Sinusoidal waveform in 
range 30 MHz–1 GHz 

Incorrect operation of 
analog circuits 

Transient burst Sparking from contacts, 
brushes, etc. 

Power and signal 
lines 

Fast pulses, fast rise 
time typically 2 kV 

CMOS circuit failure 
Microprocessor crash 

Power frequency 
Magnetic field 

Field from power cables, 
motors, transformers, etc.

Enclosure 50 Hz magnetic field Distortion of CRT screens 
Hum on audio circuits 

Conducted RF Radio transmitter (lines 
acting as aerials) 

Power and signal 
lines 

Sinusoidal waveform in 
range 0.5–230 MHz 

Incorrect operation of 
analog circuits 

Mains surge Lightning strike Power lines High voltage; several kV 
fast edge, high energy 

Semiconductor failures 
(power and control) 

Supply interruption Dips from tap changers, 
or sudden added load 

Power lines Short duration power 
loss or reduced voltage 

Protection trips, 
sequencing failures 
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There are three further immunity aspects. In dry weather, we often
experience a short sharp electric shock on leaving a motor car. This is
caused by the discharge of very high (several kV) electrostatic voltages
attained by the car body, and insulated from earth by the rubber tyres.
Similar effects can occur from clothing and carpets. The discharge to earth
(called ESD for electrostatic discharge) can severely damage electronic
equipment, particularly integrated circuits based on CMOS technology. 

When an electrical current passing through an inductive load is inter-
rupted, the inductance (which tries to maintain the current) causes a large
transient voltage to be produced. It is this effect which is largely
responsible for the clicks and pops heard on telephone lines. In industry
this noise is often caused by direct on line (DOL) starting and stopping
of motors or the operation of hydraulic and pneumatic solenoids. The
effects can be reduced to some extent by suppression of loads (a typical
method being shown in Figure 1.19) but it can never be totally eliminated.

Finally there are large voltage spikes conveyed along power or earth
lines. These can result from lightning strikes onto power lines or from tap
changers, switching of power factor correction equipment or just general
load disturbances on the supply network. Direct on line (DOL) starting
of large induction motors is a common source of voltage dips. 

In each of the above cases the directive defines required levels of
immunity. 

The regulations concerning EMC are often confused with the related,
but broader, topic of CE marking. One of the major barriers to trade is
the different standards applied in different countries. This causes great
difficulties for manufacturers who have to conform with many different
standards making it impossible to make a standardized product. Many
European standards (BSI, DIN, VDE, etc.) are being harmonized into
a common European set of standards. (XX-ENnnnnn where XX is the
national prefix, e.g. BS in the UK. The first one or two digits give an
indication of its origin, e.g. 2 is based on ISO, 40 on CENELEC, 50 on
CISPR, and 60 on IEC Provisional standards, out for comment, start
prEN, and agreed, but not yet adopted, standards start ENV.) 

Any product sold within the European Union must conform with
any relevant standards. The CE mark is a manufacturer’s declaration
that the product meets all the requirements of the relevant standards
and directives. It is not a quality mark. 

Although there are a range of standards and directives (CE marking is
found on children’s toys, for example), industrial equipment will norm-
ally require compliance with at least one of the following directives: 

• LV Directive 73/23/EEC This states that electrical equipment shall not
endanger the safety of persons, domestic animals or damage property.

• EMC Directive 89/336/EEC This is discussed above. 
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• Machinery Directive 89/392/EEC A machine (an assembly of linked
parts or components joined together for a specific application) must
satisfy the relevant essential health and safety requirements. 

There are many people and organizations involved in the manufacture
and use of an industrial machine or complete plant; equipment manu-
facturers of components such as drives, PLCs or motors, panel builders,
machine manufacturers, the installer and the end-users themselves. Each
must take responsibility for their actions. For example, the manufacturer
of a VF drive unit must provide CE marking for the LV directive, but
not for the EMC directive as this is the responsibility of the panel builder
or machine manufacturer who must follow correct installation methods
for the drive, cabling and motor. Although it is possible, in theory, for a test
house to perform relevant tests, it is usual for those responsible to self-
certify and apply the CE mark. A technical construction file should be
kept to justify the certification. Because it is a self-certification scheme it
is likely that enforcement will be complaint driven.

8.7 Other programmable devices 
Most modern devices such as control systems, sensors, drives and actu-
ators are programmable. There are many advantages to this approach.
For example where maybe ten different pressure transducers previously
had to be held on stores stock, only one now needs to be held which can
be set for the correct range at the time of installation. 

Similarly a motor drive (AC VF or DC) which used to have maybe
half a dozen trim potentiometers for acceleration, deceleration, maximum
speed and current limit can now have several hundred user adjustable
parameters including factors such as skip frequencies (to avoid resonant
speeds) and various voltage to speed curves for fans, pumps, loads with
high starting torque, etc. 

Programmable devices bring many benefits but can also bring many
problems if care is not taken with the documentation and support. If
a flow transducer had to be changed twenty years ago the correct spare
would be taken from the stores, the isolation valves closed and the
transducer changed, a simple matter of two pipes and two terminals for
the electrical signal. 

With a programmable device there will be many additional steps. The
range (engineering units, maximum and minimum) must be set along
with output signal format (voltage, current, serial) filtering, linearization,
highway address plus many more parameters. When using programmable
devices, therefore the following points should always be considered.

Some method of setting or loading the many device parameters will
be needed, either via dedicated front panel controls or via an external
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programming terminal (often a portable computer). If this terminal has
been lost, stolen (take particular care of notebook PCs), damaged or has
a flat battery the repair staff have very real problems. Ensure that
programming terminals are secure, well cared for and in good working
order ready for use at all times. If possible have a spare programming
terminal so you are not reliant on one device. Make sure that people
know where the programming terminal is, and don’t leave it locked in
a cupboard where only one person has the key. 

The operation of the terminal may be obvious when it has been used
several times during commissioning, but three years down the line when
experience has vanished and the manual cannot be found it may take
many hours to perform a simple device set-up. Try to produce an easily
accessible ‘Idiots Guide’. The more powerful the programmable device,
the more of a problem this can become. 

If an external programming terminal is required, there will be a lead
to link the terminal to the device. This will usually use some form of
serial communication, often with simple D type connectors. If, however,
the lead cannot be found at 3:00 a.m. and the manual showing the
connections has been lost, the programming terminal and the program-
mable device are worse than useless. Therefore: 

Keep leads where they can be easily found. Have a home for each
lead to which it can be returned after use. 

Attach identifying labels so the correct lead can be found. Don’t
purely go on simple descriptions such as ‘9 pin female to 25 pin male’, there
is usually a lot more detail required. For example many simple 9 pin
D type to 9 pin D type leads have pins 2 and 3 crossed, many don’t.
Some link CTS/RTS, others use full hardwire handshaking. Leads may
look identical to the eye but may not be interchangeable. 

Ensure that drawings of the leads are available so that a new lead can
be made if the original is lost or damaged. This problem is much more
acute if the plugs on the lead are non-standard. As mentioned above
common problems are the connections of pins 2 and 3 in a D type connec-
tor and what internal links (e.g. CTS–RTS) are required inside the
plugs at each end. 

Take particular care of fibre optic leads; replacement is near impossible if
these are lost or damaged in the middle of the night or at weekends. 

Consider having at least two sets of leads. One for everyday use and
one stored as a secure backup if the original has been damaged or cannot
be found. 

Produce documentation showing the parameters which differ from the
default. These, in conjunction with the ‘Idiot’s Guide’, should be written
to allow anyone with reasonable knowledge to bring the system back to
working order. 
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Most companies are meticulous about keeping track of drawing mod-
ifications (e.g. drawing 702-456 is on revision E dated 23rd November
2001). It is very easy to change the operation of a programmable device and
there is usually no record kept of these changes. The earlier Figure 8.40
shows a typical sequence of events leading to a state of confusion in
the early hours of the morning. Ensure all modifications are recorded
in a log book and ensure some form of version control is enforced to
ensure that up to date software and parameters are reloaded into a
device if it has to be changed. Don’t keep these masters in the bottom
drawer of someone’s desk, use a secure location (such as a fire safe) and
keep adequate back-ups.

Think of the worst situation. The author has had the experience of
having all the PCs on a SCADA network stolen (from locked control
rooms) during a Christmas shutdown. Nominally each PC held the
backups for the others, but with all PCs gone the first line back-ups had
also gone! Fortunately this situation was saved by CDROMs in a fire
safe. Have a plan as to how you can recover from your worst nightmare.
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9.1 Introduction
This chapter contains ladder logic demonstrating real life applications
and showing how common problems can be solved.

It would be confusing to jump around different PLCs in this chapter
so all the examples have been written for the PLC5. They should,
though, be easily adaptable to all PLCs with minimal change. 
The PLC5 data table areas used in these examples are: 

I:rs/bb Real input from bit bb on card in slot s of rack r (e.g. I:35/07)
O:rs/bb Real output to bit bb on card in slot s of rack r (e.g. O:41/12)

Inputs and outputs can also be used as a 16 bit word in the form I:rs
which is the 16 bit word from slot s in rack r (e.g. I:26) This is useful for
obtaining data from decade switches for example. 

Bf/b Bit storage. Bit b in Bit file f (e.g. B13/21) 
Nf:n Integer word n in Integer file f (e.g. N27:5) An integer word can

hold a number in the range −32,768 to 32,767 
Ff:n Floating point number n in Float file f (e.g. F8:23). A floating point

number has approximately seven significant figures and can be
in the range 1.1754933E-38 to 3.4028237E + 38 (IEEE single pre-
cision 32 bit numbers) 

The PLC5 supports other data table types (e.g. ASCII text) but these
are not used in these example. 

The PLC5 uses the common ladder logic symbols: 
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–] [– is true when the signal is present 
–]\[– is true when the signal is absent 
–( )– is an output 
–(L)– is a latched output, once set it remains made and can only be

cleared by 
–(U)– which unlatches (clears) the address 

These can be used with real inputs and outputs or storage bits. 
Timers have the form Tf:n where f is the file and n the timer number

(e.g. T4:7). All the timers in these examples use a 0.01 s timebase, so
a preset of 125 is 1.25 s. Timers can be a delay on (TON) or a delay off
(TOF).

A MOV (for Move) instruction moves data from one location to
another. In these examples it is usually used to turn a floating point
number into an integer number before sending to an analog output
card. 

Basic arithmetic instructions are ADD, SUB, MUL, DIV. The numbers
in the instruction can be any mix of floats and integers. Constants (fixed
numbers) can also be used. If a MUL is used with two integer numbers
to give an integer result, care must be taken to ensure an overspill does
not occur. The DIV (divide) rounds to the nearest number if an integer
result is used (e.g. 46 DIV 10 gives the result 5, 44 DIV 10 gives 4).
This is discussed further in Section 9.12. 

The PLC5 also has a Compute CPT instruction which allows a
mathematical equation to be evaluated. This has been used in a few
places to stop the ladder code becoming excessively long to the point
of disguising the points being made. Any CPT instruction can
be expanded into several individual ADD, SUB, MUL or DIV
instructions. 

Comparison instructions used are: 

GRT Greater than 
GEQ Greater than or equal to 
EQU Equal to 
LEQ Less than or equal to 
LES Less than 

The code used in the examples is deliberately ‘verbose’ so the steps can
be clearly seen. This is not necessarily bad practice as good code should
be easy to understand. Experienced PLC5 programmers will also note
that I have constructed functions which are built into the PLC5 instruc-
tion set (e.g. the –[ONS]– oneshot) but the aim is to show how functions
can be achieved on less powerful PLCs. 

075065757X-ch009.fm  Page 363  Saturday, June 28, 2003  5:05 PM



364 Programmable Controllers

9.2 One Shot 
A One Shot generates a single scan pulse on a rising or falling edge as
shown on Figure 9.1. Some PLCs, such as the PLC5, have this function
as part of their basic instruction set. For those that don’t, however, a single
scan pulse is easy to generate with just two rungs. 

The rungs in Figure 9.2 show the basic idea. Trigger is the input signal.
Trigger_2 in rung 1 is a copy of Trigger but this does not become true
until rung 0 has been obeyed. Trigger OneShot is therefore true for the
first scan after Trigger becomes true but is false thereafter. 

The rungs in Figure 9.3 show typical examples of the use of a one
shot. In Figure 9.3(a) the Raise PB adds five to the setpoint each time
it is pressed. In Figure 9.3(b) output Lubrication Solenoid is operated
for exactly four seconds each time the Lubricate push-button is
pressed. In both cases holding the button down has no further effect.

Pulse width one program scan

falling
One Shot

Input

One Shot
Rising

signal

Figure 9.1 Rising and falling OneShots

Figure 9.2 Generation of a OneShot (one PLC scan) pulse on a rising 
edge
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In Figure 9.3(b) a branch has been used to generate the one shot
with just one rung. 

Changing the normally open contacts of Trigger to normally closed
contacts as rungs 2 and 3 produces a one scan pulse on the falling edge
of Trigger as shown on Figure 9.4. 

9.3 Toggle action
A toggle action is used on many ball-point pens, the first press of the
button extends the head, the next push retracts it. A single button can be
used to start and stop a motor, press once to start, press again to stop,
sometimes called ‘Push On/Push Off ’. The action can be summarized
by Figure 9.5. 

(a)

Figure 9.3 Typical uses of OneShot pulses: (a) changing a number by 
a fixed amount
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(b)

Figure 9.3 (cont.) (b) operating a plant device for a fixed duration 
of time every time an event (in this case a button press) occurs

Figure 9.4 Generation of a OneShot pulse on a falling edge
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The toggle action is achieved with the three rungs in Figure 9.6. The
first rung simply produces a One Shot on the rising edge of the input
signal as described in Section 9.2. This rung can be omitted if a One
Shot function is available. 

The toggle itself is generated in rungs 1 and 2. There is a Toggle bit
B13/10 and a Toggle Mimic B13/11. Note that, because the program scan
goes from top to bottom, Toggle Mimic is updated after Toggle. Toggle
Mimic therefore shows the state of Toggle on the previous scan. 

If Toggle Mimic is false, i.e. Toggle was false last scan, the upper branch
makes Toggle true. Similarly if Toggle Mimic is true, the lower branch makes

Input

Output
signal

signal

Figure 9.5 Toggle action

Figure 9.6 Production of a Toggle (push-on, push-off) action. 
The OneShot signal is essential, without it (i.e. replacing B3/6 by I:10/05 
in rung 1) would make the output cycle on/off once per program scan 
when the input signal is present
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Toggle false. Toggle (and Toggle Mimic) thus change state for each rising
edge of the Input signal. 

The toggle circuit can also be used to divide an input frequency by
two as shown on Figure 9.7. The output pulse train will have an equal
mark/space ratio.

9.4 Alarm annunciator 
Most control systems will have an alarm annunciator of some type via
which problems on the plant can be drawn to the operator’s attention.
The general principles of alarm annunciators are discussed in Section
6.4, this section turns those ideas into PLC ladder logic. 

The basic idea can be summarized on Figure 9.8. When an alarm
occurs an indicator on a panel (or a screen) will flash showing a new alarm
has occurred and requires acceptance. When the operator accepts the
alarm, the indicator goes solid (if the alarm still exists) or goes out (if the
alarm condition was transitory).

The ladder logic uses three rungs per alarm as shown on Figure 9.9.
The alarm signal arrives via 1:00/14. Like most alarm signals this is

Figure 9.7 Equal mark/space ratio. The output signal B3/15 (used here 
as a flasher bit for driving alarm lamps) has equal mark/space times. 
This equality is unaffected by the period of the Timer T4:10
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Unacknowledged
alarm present

Alarm
accept
pushbutton

Alarm
indicator

Audible
alarm

Alarm
signal

Alarm acknowledged
but still present

Alarm signal clears
before acknowledgement

Figure 9.8 Typical alarm annunciator operation

Figure 9.9 Simple alarm annunciator routine
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arranged fail-safe, i.e. it is ‘1’ for a healthy condition and ‘0’ for an
alarm. The first rung generates a oneshot when the alarm occurs as
described in Section 9.2. 

Rung 1 uses the Alarm oneshot to generate the Unacknowledged
alarm bit B3/50 which holds itself in until the alarm accept button
I:00/00 is pressed. Unacknowledged Alarm bits from all the alarms on
an annunciator can be ‘ORd’ together to sound an audible alarm or
flash a beacon when an alarm occurs. 

The final rung drives the alarm lamp or indication on a screen. If the
unacknowledged alarm bit B3/50 is set the lamp will flash (the flasher
bit B3/16 is generated in Figure 9.7). If the alarm is still present and the
alarm has been accepted the second rung of the branch keeps the alarm
lamp solidly lit. Note the bottom branch is a lamp test button I:10/02 to
allow the annnunciator indication to be checked. Often the Alarm
Accept PB and the Lamp Test button have the same address to force a
lamp test each time an alarm occurs. 

Alarms are often based on analog values, e.g. ‘Temperature in vessel 4
has risen too high’ or ‘Cooling water flow is low’. The alarm event bits are
invariably generated by comparison rungs, but if a simple Pass/Fail
test is used nuisance alarms will be generated as the signal wanders in
and out of the alarm state as shown on Figure 9.10(a). A better solution
is to have a hysteresis as shown on Figure 9.10(b) Here the signal has
to go some distance from the alarm condition before the alarm bit
resets. Figure 9.11 shows a single rung way of generating an alarm
bit with hysteresis. N7:50 is the plant signal showing cooling water
flow from an analog input card. The alarm bit is set if N7:50 goes
below 1000 litres/min but will not clear until the value rises above
1200 litres/min.

9.5 First order filter 
Analog signals invariably have noise superimposed on them, either from
interference from other sources or because the signal itself is inherently
noisy. Level signals, for example, are prone to noise from waves on the
surface.

The simplest way to reduce the effects of noise is a simple first order
filter. This can be represented as a mathematical equation:

= f (t) (9.1)

This would be difficult to implement directly in a PLC, but a simpler
version uses a sampled signal as shown in Figure 9.12. The (noisy)
input signal is sampled at regular intervals ∆t (typically 0.1 to 5 s

y T 
dy
dt
-----+
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(a) 

Alarm
signal

Alarm
setting

Signal

Time

(b) 

Alarm
signal

Signal

Time

Low trigger

High trigger

Figure 9.10 Generation of alarm from analog signals: (a) alarm with one 
fixed setting; (b) alarm with hysteresis

Figure 9.11 Analog alarm generation with hysteresis
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dependant on the application). The filtered signal is evaluated at each
sample by the equation

Filtered_value=Filtered_value+Gain× (Raw_value−Filtered_value) (9.2) 

This gives a response as Figure 9.13 which approximates to a simple
first order filter. As a rough approximation, the time constant is approx-
imately ∆t /Gain (e.g. for a step change in the raw input signal, a filter
with a sample time of 0.5 s and a gain of 0.1 takes ten samples to
achieve 66% of the final value, giving a time constant of approximately
5 s). Care must be taken with the choice of ∆T and Gain. Samples
should be taken sufficiently often to keep up with changes in the input
signal (typically ∆t will be 0.1 to 5 s) and Gain chosen in the range
0.01 to 0.1. Having ∆t too small will increase the computational loading
on the PLC. Having a small value of Gain means the sample rate is
too fast.

Filtered value
Last sample

Raw
value

+
–

Gain +
+

Filtered
value

T

Obeyed every          seconds    T

Figure 9.12 First order filter block diagram

Raw
value

T

Filtered
value

Figure 9.13 First order filter operation with gain=0.2
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Equation (9.2) can be programmed by the five rungs of Figure 9.14.
The raw signal from an analog input card appears in N7:5 and the filtered
signal is given in N7:6.

Rung 0 is a free running timer used to obey the subsequent rungs for
one scan every Preset seconds. It has been set to trigger every 0.5 s. In a
real application one timer would probably feed several filters. Rung 1
calculates the difference between the raw and filtered value. Rung 2
multiplies the difference by the Gain to calculate what must be added to,
or subtracted from, the filtered value. The correction is applied in Rung 3
and Rung 4 simply converts from floating point to integer representation.
Note that rungs 2 and 3 must be performed in floating point numbers as
the change in the filtered value may be very small. 

If a compute (CPT) instruction is available Rungs 1 to 3 inclusive can
be performed with the single rung of Figure 9.15.

Double application of Figure 9.14 (or Figure 9.15) acts as an over-
damped second order filter and can be used to apply a more severe filter.

9.6 Level control
The level of liquid in a tank must often be controlled. This is usually
achieved by varying the speed of a pump by a variable speed drive, or
opening/closing an inlet or drain valve. Usually the tank acts as a surge
tank, and accurate control of level is not required. In reality all that is
needed is some control to ensure the tank does not overflow or run dry.

To maintain strict level control a PID controller must be used, but
tuning an absolute level control can be difficult. Level is the integral of
flow and the two integral terms (one from the PID controller and one
from the flow to level) makes the loop inherently oscillatory. In addition,
all liquid surfaces have waves which make the level signal noisy.

A much simpler system directly relates the speed of the pump to the
height of the liquid in the tank, the higher the level the faster the pump
will run. At the maximum allowable height the pump will be going at
full speed and provided the pump has been correctly sized there is no
danger of overflowing or the pump running dry.

Figure 9.16(a) shows a typical example where a variable speed pump
drains liquid from a sump. The liquid level is measured with an ultra-
sonic transducer. Let Lmax be the highest level we can accept. At this
level the pump must be going at full speed Vmax of, say 50.0 Hz. Let Lmin
be the lowest level we can accept. At this level the pump must be going
at near zero speed, say Vmin. In practice, the pump efficiency falls off as
the square of the speed, so a typical value for Vmin would be 20.0Hz.

We thus have a level range RL = (Lmax − Lmin)
and a speed range RV = (Vmax − Vmin)
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(a)

Figure 9.14 Simple first order filter
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giving a slope relating them K = RV/RL

These are shown on Figure 9.16(b).
At any level L, the speed V is then given by

V = K (L − Lmin) + Vmin (9.3)

The ladder logic in Figure 9.17 achieves this. The level, from an analog
input card, is given in engineering units in N17:0. The set-up constants
for level Lmax (3500mm), Lmin (2000mm), and speed Vmax (500=50.0Hz)
and Vmin (250 = 25.0 Hz) are defined in N17:10 to N17:13.

The first three rungs evaluate RL, RV and the slope K . Note that a
sensibility check is performed in rung 2. This checks that the ranges are

(b)

Figure 9.14 (cont.) Simple first order filter

Figure 9.15 One rung filter using CPT (compute) instruction
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sensible and non-zero. The latter check is important to avoid a divide by
zero error in the DIV instruction at the end of rung 2. The data used in
these first three rungs will rarely, if ever, change. Mathematical instruc-
tions are computationally time consuming, so B13/0 is used to ensure

(a) 

Random
inflow

Pump

Drive
VF

Outflow

Speed
reference

PLC

Level

Ultrasonic
level
transducer

(b) 

minV

L min

maxV

Speed

Slope K

L max Level

Figure 9.16 Surge tank level control: (a) surge tank with random inflow 
and pumped outflow; (b) system operation
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Figure 9.17 Surge tank level control
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Figure 9.17 (cont.) Surge tank level control
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rungs 0 to 2 are only obeyed once when the PLC goes from Halt to
Run. B13/0 will not be energized on the first program scan so rungs 0 to 2
will be obeyed. B13/0 then becomes true and on subsequent scans rungs
0 to 2 will be skipped.

The compute CPT instruction in rung 4 evaluates equation (9.3).
Without a CPT a subtraction (L − Lmin) a multiplication by K and an
addition of Vmin would be required. Note that a floating point number
must be used for intermediate results and the final result of the CPT.

The resulting floating point number F18:1 (in the range 200 to 500
for 20 to 50Hz) is converted to an integer number N17:5. This is lim-
ited to the range Vmin to Vmax by rungs 6 and 7. Rung 8 moves the
motor speed to N10:0 for the analog output to the VF drive.

Rung 9 generates the run command for the motor. N17:12 is Lstart,
the level at which the pumping will commence. This is set higher than
Lmin, at 2200 mm giving 200 mm of hysteresis and protection against
rapid start/stops on waves. The pump will start once the level rises
above 2200mm and continue until the level falls to Lmin when it will

Figure 9.17 (cont.) Surge tank level control
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stop. At very low input flows the level will cycle between Lmin and Lstart
with the pump starting and stopping. At normal flow rates the pump
will run at a speed which makes the pump flow exactly match the
input flow.

9.7 Linearization
Analog signals are often non-linear and have to be linearized before they
can be used. Typical examples are thermocouples and resistance tempera-
ture detectors which have a non-linear response. The linearization is
best done with a straight line approximation which can give surprisingly
accurate results. The GEM-80 deserves particular praise for its LINCON
function which provides a built in straight line (Ax + B) linearization
function with limiting.

Figure 9.18 is a typical example of a non-linear relationship between
an input x and an output y. The input x could be the millivolts from
a thermocouple and y the temperature for example. Four known input
points X1 to X4 (and their corresponding outputs Y1 to Y4) are chosen.
Between each of these the response is assumed to follow a straight
line.

We start by defining four slopes:

3

KY1

K 1

X 1

2

X 2

Y

Y

2

3

Y

Output

4

K

InputX 4

K 4

X 3

Figure 9.18 Straight line linearization
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K1=Y1/X1
K2= (Y2−Y1)/(X2−X1)
K3= (Y3−Y2)/(X3−X2)
K4= (Y4−Y3)/(X4−X3)

The input signal x is then tested to see which range it lies in, then the
output y calculated as below:

if (x> 0) and (x < X1) then y=K1x
if (x>=X1) and (x < X2) then y=K2.(x−X1)+Y1
if (x>=X2) and (x < X3) then y=K3.(x−X2)+Y2
if (x>=X3) and (x < X4) then y=K4.(x−X3)+Y3 

As an example the rungs in Figure 9.19 convert microvolts to tempera-
ture for a type K thermocouple over the range 20 to 400 °C. The signal,
in microvolts, from a type K thermocouple over this range is: 

Temperature °C (y) Thermocouple µv (x)
0 0

100 4096 
200 8138 
300 12209
400 16397

The thermocouple signal comes from the analog input card in N37:0
scaled in microvolts. Cold junction compensation has been applied
before N37:0. A temperature of 200 °C would thus give 8138 in N37:0.
The four reference microvolts are stored in N37:11 to N37:14 (X1 to X4)
and the four reference temperatures are stored in N37:21 to N37:24
(Y1 to Y4).

The first four rungs calculate the slopes K1 to K4 which are stored in
F38:1 to F38:4. B33/0 is de-energized for the first scan after the PLC
goes from halt to run, so these rungs are only obeyed once and do not
load the PLC thereafter. Rung 4 energizes B33/0.

Rung 5 is a validity check on the thermocouple signal. Thermocouples
are prone to failing open circuit (which gives a very high temperature
reading) or short circuit (which gives zero reading). The output from
this rung, B33/1, is used to enable the following rungs and could also be
used to trigger an alarm in the event of a bad signal.

Rungs 6 to 9 calculate the temperature for each of the four ranges.
Only one of these is active at any one time, the correct rung being
selected by the comparison instructions at the beginning of each rung.
In each rung the calculated temperature is placed in the floating point
number F38:10.
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Rung 10 moves a default value into F38:10 if rung 5 determined the
input signal was not valid. With temperature measurement the default
value is usually high for safety reasons, here a temperature of 500 °C
has been used. 

Figure 9.19 Multi straight line linearization routing
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Figure 9.19 (cont.) Multi straight line linearization routing
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Figure 9.19 (cont.) Multi straight line linearization routing
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Finally rung 11 moves the temperature into the integer location
N37:1. A floating point number is used for the calculations in rungs 6 to 9
rather than an integer number to avoid rounding errors. The output
temperature is given in steps of one degree centigrade and the lineariza-
tion is accurate to better than one degree.

The program as written could be shortened by doing some off-line
work. Rungs 0 to 4 are not strictly necessary as K1 to K4 will never change
and can be found with a calculator. K2, for example, is (200 − 100)/
(8138 − 4096) = 0.024 74 02 which can be entered directly into the pro-
gram. The CPT instruction in rung 7, for example, could have F38:32
replaced by 0.024 74 02 saving storage space and making the program
run faster.

9.8 Flow totalization 
Flow measurement is very common, and often calculation of the total
volume passed in some time is required. This may be for accounting
purposes (the total gas used this shift was 40.57m3) or production
purposes (add 25 litres of product A then 50 litres of product B).

If we have a measured flow rate of F l/min, then F /60 litres will pass
each second. In general for a flow rate F l/min sampled every ∆t seconds,
∆t *F/60 litres will pass in each sample period. We can therefore calculate
the total volume with the following pseudo code: 

Figure 9.19 (cont.) Multi straight line linearization routing
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Repeat 
read new flow {from analog input card} 
wait ∆t seconds. 
volume over dt= ∆t �newflow/60 {assuming new flow is measured 

in l/min}
total volume = total volume + volume over dt

Until hell freezes over 

If the flow is measured in litres per hour line 4 becomes 

volume over dt= ∆t �new flow/3600

as there are 3600 seconds in an hour.
Figure 9.20 shows the procedure. Effectively we are sampling the

flow at fixed time intervals and calculating the total volume in each time
interval.

The three rungs in Figure 9.21 achieve this. Rung 0 is a free running
timer producing a single scan pulse every ∆t seconds. Rungs 1 and 2 are
thus obeyed every ∆t seconds. In the example the preset, and hence ∆t
is two seconds. 

The instantaneous measured flow (in engineering units (litres, gallons,
m3 or whatever) per minute) arrives in N7:0. Rung 1 divides this flow
by 30 to give the total volume in the last two seconds in F8:0. The
division by 30 is used because the flow rate is in units per minute and
we are sampling every two seconds. 

Rung 2 adds the volume in the last sample (F8:0) to the overall total
volume in F8:1 to give an updated total volume.

∆T

F1

Flow

F2

Flow F3

TimeVolume V2 = F2 × ∆T 

Figure 9.20 Simple flow totalization
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This flow totalization is very simple but examination of Figure 9.20
shows we are underestimating the total volume for increasing flow and
overestimating the volume for decreasing flow. Over time these errors
will more or less cancel, but a more accurate method will use the average
flow over the sample time as shown on Figure 9.22. Note that no more
samples have to be made as each measurement is both the last reading
in the last sample and the first reading in the next sample. 

The procedure can be summarized in the pseudo code: 

old flow = 0 {done once just to initialize the variable} 
repeat 

wait ∆t seconds 
read new flow {from analog input card} 

Figure 9.21 Simple flow totalization
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average flow = (new flow + old flow)/2 
volume over dt = ∆t �average flow/60 
total volume = total volume + volume over dt 
old flow = new flow {ready for next loop} 

until hell freezes over

This is known as trapezoid integration and Figure 9.23 shows how this can
be achieved in ladder logic. As before a free running timer is used to
generate a single scan pulse every Preset seconds. In this example this
has been set at one second. The four rungs are only obeyed for one scan
every second.

Rung 1 adds the current flow (in N7:10 from an analog input card)
and the flow last scan (in N7:11) ready for the average flow calculation.

Rung 2 divides the summed flows by 120; this is a divide by 60 to get
from litres per min to litres passed in a second and a divide by 2 to give
the average flow. The result, in F8:5, is the total volume in the last
second.

Rung 3 adds the volume in the last second to the total volume in
F8:6.

The final rung moves the current flow (N7:10) to the last flow (in
N7:11) ready for the next sample time. 

Both these approaches work well, but care is needed in the implemen-
tation. The first consideration is the sample rate. The accuracy of the

Old flow

New flow

Volume = Average flow × ∆T 

Time

Average flow

Flow

Figure 9.22 Trapezoid integration
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timers in Figures 9.20 and 9.22 are generally very good, but are influ-
enced by the scan time of the PLC. If the scan time is a typical 20ms, a
nominal one second sample time will vary randomly between 1.00 and
1.02 seconds. This effect can be reduced by having a long sample time.
Increasing the sample time, however, makes the system slow to respond
to changes in flow. Depending on the physical size of the pipes on the
plant, sample times of one to thirty seconds will normally be used.

Figure 9.23 Trapezoid flow totalization
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Some PLCs have system bits which are driven by the PLC, S:23/0 in
the PLC5 for example, is a toggling bit with a period of two seconds.
These system bits are unaffected by the PLC scan time and their use
in place of the free running timers will significantly improve the
accuracy.

PLCs which support subroutines often allow program files to be
triggered at fixed time intervals. In a PLC5, for example, these are
called STI (for Selectable Timed Interrupt) files. These are ideal for flow
totalization as the trigger rate is very accurate (repeatability typically
better than 1 ms) and is unaffected by the program scan. With a time
triggered program file the free running timers and their contacts are not
required.

The second consideration is the resolution of floating point numbers.
In rung 2 of the first example and rung 3 of the second example we add
a small number (the volume passed in the last sample time) to a large
number (the total volume since totalization started). A floating point
number typically has a resolution of seven digits, so 87 583.52 and
7.405716 are both valid floating point numbers. If they are added,
however, eleven digits would be required for the result. This cannot be
handled so the result is truncated to 87 590.92. The error here is small
but cumulative. Eventually the state is reached where the addition of the
small sum cannot be made at all, for example: 

12 345 670 + 6.789 gives 12 345 670

and the totalization has totally stopped working. 
Let us assume our flow measurement is accurate to about 1%. There

is no point in representing it to better than 4 digits. This leaves 3 digits
(of the seven) for the total volume if we are not to lose accuracy as the
lower digits are dropped. Let us assume a typical volume in the sample
period will be N.NNN. The maximum value we can allow the total
volume to rise to is NNNN.NNN before we lose digits. This can be
achieved by the rung in Figure 9.24 which is again triggered once per
sample time.

If the total volume (in F8:6) goes above (or equal to) 1000 (four digits),
1000 is subtracted from F8:6 and one added to F8:7 which holds the
total volume divided by 1000. Note that there is no error in this operation.
F8:7 holds the flow in thousands of units and F8:6 the balance volume
0 to 999.999. For example

Vol in dt F8:6 F8:7
Scan N 998.327 56 (total 56 998.327)

7.214
Scan N + 1 5.541 57 (total 57 005.541)
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Technically the conversion from flow rate to total volume is integration.
Identical methods can be used to calculate distance from speed, and speed
from acceleration. Double integration can go from acceleration to velocity
to distance; a technique used to track rockets.

9.9 Scaling
This example shows how to convert an input analog signal into engineer-
ing units for use in the PLC program. Suppose we have a 4–20 mA
signal from a temperature transducer with a range 800 to 1500°C. This
is connected by a 250 ohm burden resistor into an analog input card with
a 0–10 V range. The analog card gives a 12 bit reading from 0 to 4095.
We can thus represent the system by Figure 9.25(a).

The analog temperature signal at the card terminals will go from 1 to
5 V giving a signal range of 410 to 2048 for the program. We wish this
to be in engineering units to aid fault finding. To do this we need to fol-
low the graph on Figure 9.25(b).

The range in engineering units, Espan is (1500 − 800) = 700.
The range from the card Ispan is (2048 − 410) = 1638.

Figure 9.24 Adding large and small numbers
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If the input signal from the card is Iin then the signal in engineering
units is given by

Eout = Emin + (Iin − Imin) *Espan/Ispan

where Imin is the minimum card signal (410) and Emin is the minimum
input signal in engineering units (800).

The slope Espan/Ispan could be calculated by the PLC on the first scan
(as done for the linearization routine in Section 9.7) but here we will

410

units

E Span

800

1500

4–20 mATransducer

250 Ohm
resistor

Engineering

–

PLC
analog
input

+

(a)

(b)

+

–

24 V
PSU

input
AnalogI Span 2048

Figure 9.25 Scaling of an analog input signal to engineering units: 
(a) a typical 4–20 mA loop; (b) conversion to engineering units
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calculate it off line and enter it as a constant with value 700/1638=0.427
35. Similarly Imin and Emin are entered into the rungs as constants (410
and 800 respectively).

The routine is shown on Figure 9.26. Rung 0 checks the input signal
is within the expected range. If not, rung 3 assigns a default value of 1600.

If the value is good, rung 1 calculates (Iin − Imin) * Espan/Ispan and rung 2
adds Emin to give the result.

The basic four rungs can be used for any linear conversion between
two variables of the general form Ax+ B. The example converts an
analog input. Another common application is for analog outputs where

Figure 9.26 Input signal scaling. These are for a 4–20 mA signal which 
produces a 1–5 V signal with a 250 ohm burden resistor. The signal is 
read by a 0–10 V 12 bit analog card with a range of 0–4095
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an output 0–1000 (for, say 0–100.0%) is converted to a range of 410 to
4095 to give 4–20mA on a 0–20 mA analog output card.

9.10 Gray code conversion 
The absolute position of a device is often required in sequencing
applications, and this is usually provided by an optical encoder. These
consist of an optical grating moving in front of photocells. Figure
9.27 shows a very simple example encoded in binary with four bits giving
sixteen possible positions. 

Binary encoding, though, has a potential problem. As the encoder
goes from position 7 to position 8 the binary count changes from 0111
to 1000. It is very unlikely that all bits will change simultaneously, and
PLC input cards inherently turn On and Off with different time
delays. Transiently, therefore, we could see 0111> 1111 > 1000 or
0111> 0000> 1000 or any other combination of four bits. Similar prob-
lems can occur on any change. 

This problem can be overcome by using a coding where only one bit
changes on each transition from one number to the next. Such codes are
known as Unit Distance Codes. By far the commonest unit distance code is

Figure 9.26 (Cont.) Input signal scaling. These are for a 4–20 mA signal 
which produces a 1–5 V signal with a 250 ohm burden resistor. The signal 
is read by a 0–10 V 12 bit analog card with a range of 0–4095
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the Gray code which is built up by reflecting the bit pattern and changing
the top bit as below:

Decimal ------- Gray ------
0 0 00 000
1 1 01 001
2 11 011
3 10 010
4 110
5 111
6 101
7 100

Giving a four bit Gray code 

Decimal Gray
0 0000
1 0001
2 0011
3 0010 < 
4 0110 <
5 0111 <* 
6 0101 <* 

Photocells

Figure 9.27 Four bit absolute position encoder
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7 0100 <* 
8 1100 <* 
9 1101 <* 

10 1111 <* 
11 1110 < 
12 1010 <
13 1011
14 1001
15 1000

The principle can be extended to any number of bits. There are two
things to note about the code. First it is symmetrical about the 7/8 transi-
tion. The second is that codes can be built for any even number either
side of the centre. A ten position Gray code is marked by < and a six
position Gray code by *. Note that each of these spills over (from 12 to
3 for example for the ten position code) with only a single bit change.
Any even number sequence can be turned into a Gray code.

Before a Gray code can be used it must be turned into a normal
binary number. This is based on the Exclusive OR (XOR) gate of
Figure 9.28(a) which has the truth table of Figure 9.28(b). In ladder
logic and XOR gate is built as Figure 9.28(c).

The conversion of a four bit Gray code to Binary is shown on
Figure 9.29. This converts directly to the four rungs of Figure 9.30. The
principle can be extended to any number of bits. The most significant
Gray code bit is copied to the most significant binary bit. Each subse-
quent binary bit BN is the XOR of Gray code bit GN and BN + 1.

The conversion will give the full range of the bits; for four bits the
result will be 0 to 15 inclusive. If a restricted range is used an offset must
be subtracted. With ten positions and four bits the count will go from 3
to 12 then overspill back to three. Here three must be subtracted from
the binary number to give ten positions from 0 to 9.

A common Gray encoder gives 360 positions (0 to 359) per revolution
and consequently an output in degrees. This requires nine bits, so the
full range is 0 to 511. The 360 positions are centred on the 255/256 tran-

(a) 

B
A

Q

(b) 

0 1 1
1
1

0
1

1
0

0
A

0
B

0
Q

(c) 

A

A

B

B Q

Figure 9.28 The exclusive OR (XOR) gate: (a) symbol; (b) truth table; 
(c) implementation in ladder logic
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sition and go from 76 (which is zero) to 435 (which is 359). Here the
nine bit Gray code must be converted to binary as described above then
76 subtracted from the result to give a position which goes from 0 to 359.

In general for an even number of positions N and G the maximum
number of positions of the Gray code (which will always be a multiple
of two: 4, 8, 16, 32, 64, 128, 256, 512, 1024, etc.) the offset which must
be subtracted is given by: 

Offset = (G − N)/2

For our 360 degree encoder Offset = (512 − 360)/2 = 76. 

There are a few general facts which should be established before
using any encoder; Gray, binary or incremental. The vast majority of
PLC input cards sink current. Some encoders have an NPN output
which also sinks current. If an NPN encoder is connected to a standard
input card the signals cannot be read. Pull up resistors, one per bit, may
be used, or an input card which sources current. 

In these circumstances the polarity of the signal as seen by the PLC
must be determined with some care. Some sourcing input cards denote
a low voltage (i.e. current being drawn) as a ‘1’ state. These work well
with NPN output encoders which often have the low state as the ‘1’.
Some cards don’t, however, and these will invert the signal as seen by
the PLC. Before the signal is used it must be inverted again by software.
This can be done laboriously bit by bit with a n/c contact linked to a coil

G0

G1

G2

B1

B0

B2

G3 B3

Figure 9.29 Gray code to binary conversion using XOR gates
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for each bit as Figure 9.31(a) or, if an XOR function is available, by a
single XOR which operates on the entire word from the encoder. In the
XOR mask each bit used by the encoder must be set to a ‘1’ as shown
on Figure 9.31(b) for a sixteen bit encoder.

9.11 BCD to Binary conversion 
Numeric data is often entered by rotary or thumb-wheel switches with a
0–9 range. Each switch gives four binary bits. When these are arranged
as hundreds, tens and units the result is a BCD coded number. Most
PLCs work in two’s complement binary, so conversion from BCD to

Figure 9.30 Gray code to Binary code conversion
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Binary is often required. Some PLCs (notably the PLC5 and SLC500
families) have a BCD to Binary function (FRD, FRom Decimal, for the
PLC5). For those PLCs without this function, the conversion can be
performed as below. 

(a)

Figure 9.31 Using devices with negative true inputs. (a) Laborious bit 
by bit inversion of negative true input signal

(b)

Figure 9.31 (cont.) (b) One rung inversion of 16 bits using an XOR 
instruction
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The principle is shown on Figure 9.32. The input signal (range 0–999)
occurs on 12 bits from input card 6 in slot 2, i.e. addresses I:26/00, I:26/01,
etc. Each group of four bits is converted to a binary number with range
0 to 9 (binary 0000 to 1001). The number for the hundreds (in N17:42)
is multiplied by 100, the number for the tens (in N17:41) is multiplied
by 10 and both then added to the number for the units in N17:40 to give
the binary result in N17:46. 

The rungs to achieve this are shown on Figure 9.33. There are 12
rungs which build the numbers in N7:40, 41 and 42. To save space only
eight of these are shown. Note that individual bits in an integer number
can be accessed; N17:40/0 is the (least significant) bit in the 16 bit inte-
ger word N17:40. Store location N17:45 is used as an intermediate store
for the part result (N17:40 + N17:43). With a CPT instruction all four
arithmetic rungs could be done in one rung but the twelve bit rungs are
still required. 

If a PLC supports subroutines with parameter passing, a BCD to
Binary conversion only has to be written once then called when required.

9.12 Binary to BCD conversion
Data is often displayed on seven segment displays using four bits per
digit. This requires a binary to BCD conversion routine in the PLC

x1000

B8

B15

B12

B11

Hundreds

Thousands

x100

B3

Binary
coded
decimal

B7

B4

B0

Tens x10

Units
+

+
+

+
+

+
Binary

Figure 9.32 The principle of BCD to binary conversion
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program. Some PLCs (such as the PLC5 family) include this as stand-
ard (TOD for TO Decimal). The routine described below can be used
where there is no binary to BCD function. 

Figure 9.33 BCD to binary conversion
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The principle is, in principle, simple. The number is divided by 10
repeatedly with no rounding and the remainder noted each time. The
remainders are then the digits for the BCD output. For example:

Binary Number 459 
Divide by 10 45 remainder 9 
Divide by 10 4 remainder 5 
Divide by 10 0 remainder 4 

BCD digits are hundreds 4, tens 5 and units 9. 

Figure 9.33 (cont.) BCD to binary conversion
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The difficulties come because of the way PLCs handle integer division.
Some round down on integer division, e.g. 459/10 gives the result 45.
This makes this conversion easy to perform. Some PLCs (of which the
Rockwell family is one) round to the nearest number. The sum 459/10
thus gives the result 46 and the sum 454/10 gives the result 45. Both
methods have advantages in different applications, but rounding to the
nearest number makes Binary to BCD conversion more difficult. 

The four rungs in Figure 9.34 extract the first (units) digit for a
binary to BCD number for a PLC with rounding to the nearest
number integer division. Rung 0 divides the input signal N7:20 by ten
giving a result in N7:30. This result is multiplied by ten giving the
result in N7:40. If rounding up has occurred, N7:40 will be greater
than the input value in N7:20. This is checked in rung 2, and if it has
occurred one is subtracted from N7:30. This now contains N7:20
divided by 10 and definitely rounded down. It is multiplied by 10 again
giving a result in N7:41. Note that N7:41 and N7:40 are not the same.
Subtracting N7:41 from N7:20 gives the first BCD digit in N7:35
which can be transferred bit by bit to the display output in Rack 2
slot 5.

The principle of the first four rungs can be used anywhere where
a true modulo/remainder division is required.

The printout in Figure 9.34 is from a running PLC and, at first sight,
shows an apparent error at rung 1. At the time that rung 1 has just been
obeyed N7:30 will contain 46 (because of the rounding) and hence
N7:40 contains 460. After rung 2 the decrement has been performed
leaving 45. Because N7:30 contains 46 for just two rungs, and 45 for the
(much longer) rest of the program and the program terminal takes
‘snapshots’ at regular time intervals it is much more likely to see 45 than
46. By eye, the value in N7:30 will flicker between 45 and 46, showing
45 for the majority of the time. Be aware of oddities like this, they can
be very confusing when first encountered.

9.13 A hydraulic system
The final example is a real example controlling two hydraulic pumps.
The (not very well) defined specification for this would run something
along the lines of:

‘The Widget machine has two hydraulic pumps. Only one of these is required for
normal operation. The operator should be able to select which is the duty pump.
If the duty pump fails for any reason the standby pump should start. In addition
to Duty/Standby operation maintenance staff should be able to check a pump is
functional without interrupting normal operation’. 
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Figure 9.34 Binary to BCD conversion
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The final program, some 22 rungs long, is shown on Figure 9.35.       
Remember a PLC program should: 

Function correctly 
Be understandable 
Be easy to modify 

Note the documentation tags in the program. Every address is tagged
and comments are applied to most rungs. Good documentation is essen-
tial to understanding a program. Also note the cross reference tags [N]
below contacts. These show where the signal related to the contact orig-
inates. For example in rung 12 the contact ‘Auto_Run Pump_1 Command ’
(B3/23) originates at rung 8 allowing quick backward chasing of signals

Figure 9.34 (cont.) Binary to BCD conversion
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Figure 9.35 Complete program for two hydraulic pumps with 
duty/standby operation. Note the use of annotation and comments, 
very important for fault diagnosis. The program is laid out so only 
the first two rungs need to be examined for common faults
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Figure 9.35 (cont.) Complete program for two hydraulic pumps with 
duty/standby operation
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Figure 9.35 (cont.) Complete program for two hydraulic pumps with 
duty/standby operation
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Figure 9.35 (cont.) Complete program for two hydraulic pumps with 
duty/standby operation
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Figure 9.35 (cont.) Complete program for two hydraulic pumps with 
duty/standby operation
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Figure 9.35 (cont.) Complete program for two hydraulic pumps with 
duty/standby operation
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Figure 9.35 (cont.) Complete program for two hydraulic pumps with 
duty/standby operation
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when a fault occurs. All modern programming software has similar
facilities. 

Rungs 0 and 1 check if a pump is available to run. There are six real
plant inputs per pump (MCC On to Filter Healthy) and two inputs
common to both pumps (Low Oil Level and Return Filter). For each
pump there are two alarm signals (Failed to Start and Pressure Fault).

Figure 9.35 (cont.) Complete program for two hydraulic pumps with 
duty/standby operation
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These two rungs are very important and have been deliberately put at
the beginning of the program so a technician investigating a fault at 3:00
a.m. only has to look at these two rungs to have a very good idea of
what is going on. 

Rungs 2 and 3 generate status signals about the availability of the
pumps. Only one of these (B3/3) is actually used but B3/4 was added
because it was thought to be a signal which might be useful for future
development; alarm generation on a SCADA system for example. 

Rungs 4, 5 and 6 select which pump is the duty pump. Latches –(L)–
and –(U)– are used here so the duty pump selection is maintained
through supply interruptions. Note that the logic ensures pump 1 or
pump 2 is the duty pump; if it is not one it is the other. It is not possible
to select no pump as duty. Small points like this are often forgotten! 

Rung 7 generates the ‘Duty Run’ command. There are two points to
note here. The Stop Button follows good practice by using a normally
closed (fail safe) contact so it appears as a normally open contact
–] [– in the program. We must also have at least one pump available
(B3/3 from rung 2).

Rungs 8 and 9 generate the auto run signals for each pump. Note the
branches in each rung. If the duty pump is available the duty pump is
asked to run. If the duty pump is not available when an auto run is
required, the standby pump will run.

Rungs 10 and 11 are the manual (maintenance) run commands.
These do not consider which is the duty or standby pumps, and there is
no duty/standby changeover.

The auto and manual run commands are brought together at rungs
12 and 13. Note that the auto and manual run commands are separate
and there is no interaction between them. The program for manual or
auto operation can be changed without any side effects on the other.
Many people would try to compact rungs 7 to 13 inclusive into just two
rungs, eminently feasible but not easy to understand or modify. Keep
rungs simple, logical and easy to change. 

The two timers (T4:1 and T4:2) are part of the first part of the fault
checking. The two pump contactors have auxiliary contacts which
should make shortly after the contactor is energized. The two timers
will time out (i.e. energize the done (DN) bit) one second after the coil is
energized. This is more than ample time for the contacts to make. 

Rungs 14 and 15 check that the auxiliary contact on the starter has
made. If the auxiliary contact has not made when the corresponding
timer times out, the fault bits B3/31 or B3/32 will energize and latch in.
These in turn will make the corresponding pump not available at rung 0
or 1 and cause a changeover to the standby pump at rung 8 or 9. The
fault bits are cleared by the Alarm Accept pushbutton.
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The two pumps feed a common line and the hydraulic pressure is
checked by a pressure switch I:35/07. This should make (meaning good
pressure) within two seconds of a pump starting and stay made there-
after. Timers T4:11 and T4:12 in rungs 16 and 17 check the state of the
pressure switch five seconds after a pump starts (and continually there-
after) in rungs 18 and 19. If, say, there is a coupling failure between
motor and pump the pressure will fall, the pressure fault bit will be set
making the pump not available at rungs 0 or 1, and a changeover to the
standby pump will occur.

If both pumps generate a pressure fault there could be a common
hydraulic fault such as a serious leak. This is detected at rung 20.
A hydraulic fault makes both pumps not available at rungs 0 and 1.

075065757X-ch009.fm  Page 415  Saturday, June 28, 2003  5:05 PM



Appendix Number systems

We are so used to the decimal number system that it is difficult to
conceive of any other way of counting. Normal everyday arithmetic is
based on multiples of ten; for example, the number 4057 means: 

4 thousands = 4 × 10 × 10 × 10 = 4000 
plus 0 hundreds = 0 × 10 × 10 = 000 
plus 5 tens = 5 × 10 = 50 
plus 7 units = 7 = 7 
Total = 4057 

Each position in a decimal number represents a power of ten. Our
day-to-day calculations are performed to a base of ten because we
have ten fingers, but counting can be done to any number base. Of
particular interest are number bases of eight (called octal), sixteen
(called hexadecimal or hex for short) and two (called binary). In the
discussion below we will use the suffix o for an octal number, h for a
hex number and d or text for a decimal number where there is any
possibility of confusion. 124o is thus octal, 306h is hex and 255d or
twelve are decimal. 

Octal, to base eight, uses the digits 0–7. In octal you count 0, 1, 2, 3,
4, 5, 6, 7, 10, 11, 12, 13, 14 and so on. The octal number 14o means one
eight and four units, which is decimal 12d. Similarly 317o means: 

3 × 8 × 8 = 192d 
plus 1 × 8 = 8d 
plus 7 = 7d 
Total = 207d 

Hex deals with numbers in multiples of sixteen. We thus need some
way of writing a single digit to represent decimal numbers ten to fifteen.
For these the capital letters A to F are used. In hex you count 0, 1, 2, 3,
4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, 12, 13, etc. The hex number 12h
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is one sixteen plus two units which is decimal 18d. Similarly C52h
means: 

12 × 16 × 16 = 3072d (Ch is 12d) 
plus 5 × 16 = 90d 
plus 2 = 2d 
Total = 3164d 

We will return to octal and hex shortly. 
Binary, to base two, only needs two symbols, 0 and 1. Each position

in a binary number represents a power of two and is called a bit (for
binary digit). In binary you count 0, 1, 10, 11, 100, 101, 110, 111, etc.
A binary number rapidly grows in length. A binary number such as
101101 is evaluated in exactly the same way as we saw earlier for
decimal, octal and hex. Binary 101101 is: 

1 × 2 × 2 × 2 × 2 × 2 = 32d 
plus 0 × 2 × 2 × 2 × 2 = 0 
plus 1 × 2 × 2 × 2 = 8d 
plus 1 × 2 × 2 = 4d 
plus 0 × 2 = 0 
plus 1 = 1 
Total = 45d 

Similarly 1101011 is (noting 2 × 2 = 4d, 2 × 2 × 2 = 8d and so on): 

1 × 64d = 64d 
plus 1 × 32d = 32d 
plus 0 × 16d = 0 
plus 1 × 8d = 8d 
plus 0 × 4d = 0 
plus 1 × 2d = 2d 
plus 1 = 1 
Total = 107d 

Conversion from decimal to binary is achieved by successive division
by two, and noting the remainders. Reading the remainder from the top
(LSB, least significant bit) to bottom (MSB, most significant bit) gives
the binary equivalent. For example, 23d: 

23 
11 rl (LSB) 
5 rl 
2 rl 
1 r0 
0 rl (MSB) 

Decimal 23 is thus binary 10111. 
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Binary numbers are used in computers and PLCs because the two
states, 0 and 1, are easy to handle with simple circuits. Commonly,
eight binary bits (called a byte) and sixteen binary bits (called a word)
are used. A byte can represent a number from 0 to 255, and a sixteen-bit
word a number from 0 to 65535. 

Octal and hex give a simple way of representing binary numbers. To
convert a given binary number to octal, the binary number is written in
groups of three bits (from the LSB) and the octal representation written
directly underneath. For example, 11010110: 

grouped in threes 11 010 110 (LSB) 
octal 3 2 6 

giving 326o directly in octal. 
Hex conversion is similar, but groupings of four are used. Taking the

same binary number 11010110: 

grouped in fours 1101 0110 
hex D 6 

giving D6 in hex. 
Octal 326o and hex D6h are both representations of the same binary

number 11010110. 
PLCs (like all computers) work internally in binary, but this is difficult

for human beings to deal with. Octal and hex are therefore used in
many places as a halfway house between the internal workings of the
machine and our decimal system. Siemens, for example, use octal bytes,
and Allen Bradley label I/O addresses in octal. 

A single decimal digit can lie between 0 and 9 inclusive. Four binary
bits are therefore needed to represent one decimal digit. Decimal displays
and keypads frequently ignore bit combinations 1010 (10d) to 1111
(15d) giving binary coded decimal or BCD. In BCD, each decade is
coded independently into binary. For example: 

Decimal 9 4 0 7 6 
BCD 1001 0100 0000 0111 0110 

BCD is not as efficient as pure binary. Twelve bits can represent 0–4095
in binary, but only 0–999 in BCD. It is, however, much easier to inter-
face to external devices. 

Binary arithmetic is similar to decimal arithmetic. Consider the decimal
sum:

 617

345
+272
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This is evaluated in three steps: 

(a) 5 + 2 = 7, no carry 
(b) 4 + 7 = 11, one down (as result) plus carry 
(c) 3 + 2 + carry = 6 

At each stage we consider three ‘inputs’, the two digits to be added and
a possible carry from the previous (lesser significant) column. Each
column has two outputs; a result and a carry to the next column. 

Binary addition is similar, except there are only two possible states
for each digit and the carry, allowing us to build a simple truth table
with just eight entries (Table A.1).

An example of binary arithmetic is:

 1 0 1 1 0 1 0
 0 1 0 1 0 1 1

1 0 0 0 0 1 0 1 Sum (result)
1 1 1 1 0 1 0 Carry

The implementation of an adder truth table is a simple problem of com-
binational logic. 

Negative numbers are generally represented in a form called two’s
complement. The most significant digit represents the sign, being 0 for
positive numbers and 1 for negative numbers. The value part of a
negative number is complemented (1s changed to 0s and vice versa) and
1 added. For example, +12d in 8-bit binary two’s complement is
00001100 and −12d is 11110100. 

Table A.1 

Inputs Outputs

Digit 1 Digit 2 Carry in Sum Carry out 

0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1
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As expected, addition of a positive and negative number of the same
value will give a result of zero:

+12d 00001100
−12d 11110100
Lost → 1/  00000000

The top ninth bit is lost with an 8-bit byte, giving the expected result of
zero.

Two’s complement therefore allows subtraction to be performed with
simple addition. For example, 12d − 3d: 

+12d 00001100
−3d 11111101

Lost → 1/  00001001

The top bit is again lost giving the correct result of +9d. An 8-bit byte in
two’s complement form can represent −128d to +127d, and a 16-bit
word from −32768d to +32767d. Integers inside a PLC are generally
held in 16-bit two’s complement form.
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1–5v signal, 150 
4–20 mA current loop, 150 
20mA serial transmission, 193 
73/23/EEC, 358 
89/336/EEC, 358 
89/392/EEC, 359 
8086, 283, 284 
8088, 283, 284 
80286, 283, 284 
80386, 283, 284 
80486, 283, 284 
ABB Master, 33 
Absolute pressure, 143 
Accumulated value, 65, 67 
ACK, 196, 198 
Active transmitter/receiver, 194 
ADC, 151 
Address bus, 278 
Addressing of I/O: 

ABB Master, 45 
Allen Bradeley, 41 
GEM-80, 42 
Mitsubishi, 47 
Siemens Simatic, 42 

Alarm: 
annunciation, 242, 367 
floods, 245 
monitoring, 2 
system, 245 

Alarm annunciator program, 368 

Aliasing, 154 
Allen Bradeley, 33, 41 
ALU, 9 
Amplitude shift keying, 189 
Analog: 

functions, 151, 163 
indication, 247 
input cards, 158 
interface card, 151 
meters, 247 
outputs, 160 
to digital converter, 151 
signals, 140 

Analysis, 116 
AND Gate, 53 
AND/NOT, 55 
AND/OR, 54 
Annotation, 130 

of programs, 244, 342
Annubar, 144 
Anti-aliasing filter, 154 
Application layer, 213 
Architecture, computer, 7 
Area networks, 205 
Arithmetic, 78 
Arithmetic and logic unit, 9 
ARQ , 198 
ASCII, 186, 188 
ASK, 189 
ASEA, 33 
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Assembly language, 11 
Asynchronous communication, 185 
AT, IBM, PC, 283 
AT bus, 284 
Automatic transmission 

on request, 198 
Auxiliary relays, 48 
Availability, 334 

Backplane bus systems, 281 
Ballast resistor, 150 
Bandwidth, 154 
Bar-code, 173 
Bar-code, two dimensional, 176 
Bar graphs, 247 
Baseband transmission, 189 
Bathtub curve, 334 
Baud rate, 186 
BCC, 199 
BCD, 74 
BCD to binary conversion, 398 
Bearer bar, 174 
Binary, 418 
Binary coded decimal, 74 
Binary to BCD conversion, 400 
Bit pattern protocol, 195 
Block, 122, 127 

check character, 199 
graphics, 252 
transfer Read/Write, 158 

BISYNC, 195 
Bit storage, 48, 58 
Bootlace ferrules, 331 
Branches, 50 
Broadband, 190 
BS89, 249 
BTR/BTW, 158 
Bus based systems, 277 
Bumpless transfer, 171 
Byte count protocol, 195 

Cable screening, 180 
Cabling, 328 
Carrier-band, 190 

Carrier sense multiple access, 210 
Cascaded counters, 71 
CCITT X25, 195 
CEGELEC, 33 
CE marking, 354 
Central processor unit, 9 
Character based protocol, 195 
Characteristic impedance, 206 
Clones, IBM, 282 
Closed loop control, 4, 5, 164 
Code 16K, 175 
Code 39, 174 
Code one, 175 
Cold junction compensation, 141 
Collision detection, 210 
Colour codes, 329 
Colours indicators and 

pushbuttons, 235 
Combinational logic, 81 
Comments, 342 
Common mode failure, 303 
Communication: 

hierarchy, 210 
methods, 182 
standards, 185 

Comparison, 77 
Compiler, 12 
Computers (and control), 6, 276 
Computer architecture, 7 
Computer graphics, 250 
Conditional jumps, 10 
Continuous mode, 317 
Constant voltage transformers, 322 
Control: 

actions, 235, 250 
bus, 277 
characters, 188, 196 
devices, 5 

Controller, 166 
Control Logix, 101 
Controls, 4 
Control strategies, 1 
Constructional notes, 322 
Convergence, 94 
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Conversion: 
between number systems, 419 
time (of ADC), 153 

CORONET, 214 
Counter, high speed, 178 
Counters, 67 
CP code, 175 
CPU, 9, 277 
CRC, 200 
CSMA, 210 
CSMA/CD, 210 
Cubicle construction, 322 
CUTLASS, 287 
CVT, 322 
Cyclic redundancy code, 200 

DAC, 161 
Danger, 294 
Data: 

bus, 277 
communication equipment, 

190 
comparison, 77 
flow diagram, 132, 134 
highway, 215 
link layer, 212 
movement, 75 
table, 37 
terminal equipment, 190 

Database, 37 
Data matrix, 175 
DCE, 190 
DDCMP, 195 
Deadband, 164 
Decade switches, 241 
Delay On timer, 65 
Delay Off timer, 63 
Dependancy chart, 352 
Derivative time, 166 
Design criteria, 320 
Differential: 

pressure, 142 
receivers, 193, 194 

Diffuse reflection, 176 

Digital: 
displays, 237, 247 
input cards, 21 
output cards, 22 
to analog conversion, 161 

Discrimination, 25, 323 
Distributed systems, 182 
Divergence, 94 
Diverse Redundancy, 303, 306 
Documentation, 339 
Doppler flow measurement, 144 
Double word integer, 72 
DP (Profibus), 223 
Drawings, 339 
DTE, 190 
Dual slope integration, 153 
Duty of care, 293 
Dynamic failsafe circuit, 307 

EAN, 175 
Earthing, 325 

earth loop, 180 
layout, 179 

EDDI, 350 
EISA bus, 284 
Electricity at work regulations, 

325 
Electromagnetic compatibility, 

354 
Electrostatic discharge, 358 
EMC directive, 354 
Emergency stops, 308 
Emissions test, 356 
Empty time slot, 209 
Environmental considerations, 

325 
Equipment protection, 325 
Ergonomics, 232 
Error, closed loop, 164 
Error control, 196 
ESD, 358 
ESP, 214 
Ethernet, 218 
EUC, 315 
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European article number, 175 
Event driven logic, 86 
Executive, 287 
Exponent, 72 

Failure: 
modes, 296 
rate, 334 

Failure mode and effects 
analysis, 295 

Fault finding, 331, 336 
Fault finding aids, 348 
Fault tree analysis, 295 
FB, 122 
FBD, 104 
FEC, 198 
Feedback control, 5, 164 
Ferruling, 329 
FGEN, 163 
Fibre optics, 227 
Fieldbus, 219 
Filtering, 160 
FIMS, 351 
First order filter, 160, 370, 373
First read rate, 178 
First up alarm, 246 
FIP, 223 
Flags, 48 
Flip-flop (SR and RS), 60 
Floating point numbers, 72 
Flow measurement, 144 
Flow totalization, 385 
Flow velocity, 144 
FMEA, 295
FMS (Profibus), 223 
Forces, 113 
Force balance, 143 
Force balance weigher, 146 
Forth, 289 
Forward error control, 198 
Foundation fieldbus, 223 
Framing error, 186 
Frequency shift keying, 190 
FRR, 178 

FSK, 190 
Functional safety, 315 
Function block diagram, 101, 103 
Function block(FB), 95, 122 

G table, 63 
Gain, 169 
Gauge pressure, 143 
Guarding, 312 
GEM-80, 33 
Good software practice, 128 
GPIB bus, 278 
Graded index fibre, 228 
Grafcet, 95, 101 
Grafset, 94, 101 
Graphics, computer generated, 

250 
GSD file, 224 
Guarding, 312 

HASWA, 294 
Hazard, 294, 315 
Hazard and operability study, 295 
Hazard rate, 334 
HAZOPS, 295 
HDLC, 195 
Health and Safety at 

Work Act, 294 
Health and Safety Executive, 304 
Heat dissipation, 326 
HEX(adecimal), 418 
Hierachy, communication, 210 
High demand mode, 317 
High level language, 11 
Histogram, 112 
Hold mode, 170 
Housekeeping, 128 
HPIB, 278 
HSE, 304 
Hysteresis, 246, 370, 372, 373 

IBM-PC clones, 282 
Identification of I/O, 28, 40 
IEC 1131, 99 
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IEC61508, 315 
IEEE 32 bit real number, 73 
IEEE-488 bus, 278, 279 
IL, 101 
Imagem, 256 
Immediate input, 137 
Immediate output, 137 
Immunity tests, 356 
Indicator colours, 235 
Indicators, 234 
Industrial control, requirements, 

8, 14
Infant mortality, 334 
Input cards, 21 
Inputs, analog, 58, 151 
Installation notes, 179 
Instruction list, 101, 104 
Instruction register, 9 
Instructions, computer, 10 
Integers, 72 
Integral time, 165 
Intelligent modules, 178 
Interference, 179 
Interleaved 2 of 5, 174, 175 
Interpreter, 12 
IP ratins, 17, 326 
IP number, 326 
IR, 9 
ISA bus, 283 
Isolated output card, 25 
ISBN, 174 
ISO/051 model, 212 

Jumps, 10, 37 
Junk rungs, 139 

Keyboard programming, 21 

Labels, 138 
Ladder diagram, 9, 19, 101, 103 
Ladder orientation, 176 
LAN, 205 
Latch/unlatch, 62 
Latent fault, 302 

LD, 101 
Lead/lag control, 173 
Leading zero suppression, 240 
Legal aspects of safety, 294 
Level control, 373 
LIMIT, 163 
Limit instruction, 77 
LINCON, 163 
Linear variable differential 

transformer, 149 
Linearization, 380 
Liquid level measurement, 147 
Listener, 279 
Local area networks, 205 
Logic symbols, 52 
LOGO!, 97 
Long integer, 72 
Loop tuning, 167 
Low demand mode, 317 
LV directive, 358 
LVDT, 149 

Machine code programming, 11 
Machinery directive, 359 
Maintainability, 333 
Maintainance, 31, 118, 331 

philosophies, 335 
Majority voting, 303 
Man machine interface, 232 
Mantissa, 72 
MAP, 219 
Mark, 186 
Mass flow, 144 
Master (ABB), 33 
Master control relay, 127 
Master/slave network, 207 
Matrix code, 175 
Maxicode, 175 
Maximum probable loss, 295 
MCA bus, 284 
MCR, 127 
Meantime: 

between failures, 333 
to repair, 333 
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Memory: 
storage, 58 
usage, 133 

Message displays, 271 
Messasge protocols, 195 
Meters, 247 
Micro PLCs, 95 
Microprocessor, 9 
Midnight programming, 

276, 297 
Mitsubishi, 47 
MMI, 232 
Modems, 190 
Modulation, 189 
Monitoring systems, 2 
MPL, 295 
MSDOS, 283 
MSG instruction, 215 
MTBF, 333 
MTTF, 333 
MTTR, 333 
Multiplexed: 

analog inputs, 152 
outputs, 237 

Multiplexing, 152 

NAK, 196, 198 
Negligence, 293 
Nesting, 127 
Network: 

layer, 212 
sharing, 209 
topologies, 207 

Noise, 187, 227, 297, 354 
power density spectrum, 187 

Non retentive, 63, 67 
Notify on change, 223 
Numbers, 72 
Number systems, 418 
Numeric representations, 72 
Numerical: 

applications, 72 
inputs, 240 
outputs, 236 

OB, 122 
Object program, 12 
Occupational Health and 

Safety Act, 294 
Octal, 418 
Off-delay, 64 
Offset, 150 
On-delay, 63 
One scan pulse, 64, 363 
One shot, 364 
Online monitoring, 109 
Open loop gain, 165 
Optical isolation, 22 
OR/AND, 55 
Organisation block, 122 
Orifice plate, 144 
OR/NOT, 55 
OR gate, 54 
OSHA, 294 
Output cards, 22 
Overlapping contacts, 

dangers of, 309 
Overspill flag, 79 

Panelview, Allen Bradeley, 254 
PA (Profibus), 224 
Parallel transmission, 183 
Parameters, 127 
Parity bit, 186, 199 
Passive receiver/transmitter, 194 
PB, 122 
PC bus, 284 
PC, IBM, 282 
PC (Program counter), 10 
PCDOS, 282 
PDF-417, 175 
Peer to peer link, 207 
Permit to work, 304, 314 
Phase shift keying, 190 
Physical link layer, 212 
PI control, 165 
Picket fence, 176 
PID control, 166 
PIDABS, 170 
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PIDINC, 170 
Pixel graphics, 252, 256 
PLC-5, 33 
PLC scan time, 36, 89, 135 
Position measurement, 148 
Positively driven contacts, 309 
Power supplies, 322 
PrEN1050, 294 
PrEN954-1, 311 
Presentation layer, 213 
Preset, 65, 68 
Pressure measurement, 142 
ProTool , 267 
Process variable, 4, 164 
Producer/consumer model, 222 
Profibus, 223 
Program: 

block (PB), 122 
counter, 10 
records, 342 
scan, 36, 89, 135 
structure, 119 

Programmable controllers, 20 
Programmable devices, 359 
Programmable logic 

controllers, 20 
Programming software, 105 
Programming terminals, 19, 21 
Project stages, 31, 116 
Proportional control, 164, 169 
Proprietary communication 

systems, 214 
Protection, environmental, 325 
Protocol (serial standards), 

185, 191 
PS2, IBM, 283 
PSK, 190 
PT100 sensors, 14, 141 
Pulses, speed of, 37 
Pulse timer, 64 
Pushbutton colours, 235 
Pushdown stack, 289 
PV, 4, 164 
Pyrometer, 142 

Quarter amplitude damping, 168 
Quiet zone, 174 

R table, 63 
Rack, 18, 40 
Radio frequency interference, 356 
RAMP, 164 
Real numbers, 72 
Real time, 7, 16 
Redundancy, 302, 308 
Reliability, 332 
Remote I/O, 29, 39, 322 
Resistance thermometer, 141 
Resolution, 151 
Retentive storage, 63 
Retentive timer, 67 
RFI, 356 
Risk, 294, 315 
Risk assessment, 294, 311 
Risk reduction factor, 317 
Robust software, 129 
RRF, 317 
RS232, 191 
RS422, 193 
RS423, 193 
RS449, 193 
RS flip-flop, 60 
RS logix, 5, 106 
Rung, 50 

S of P, 85 
Safe failure, 320 
Safety, 293 

integrity levels, 317 
legislation, 314 
life cycle, 318 

SCADA, 271 
SCADIX, Siemens, 253 
Scan time, 36, 89, 135 
Screened cable, 180 
Screens, good practice, 267 
SDLC, 195 
Selectable time interrupt, 137 
Sequence block, 122 
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Sequencer, 86 
input/output, 95, 97 

Sequencing systems, 2, 86 
Sequential function chart, 

95, 101, 106 
SEQR, 95 
Serial: 

Communications, 82 
standards, 185 
transmission, 183 

Session layer, 212 
Set/reset, 60 
Setpoint, 4, 164 
SFC, 95, 101, 102, 125 
Shannons sampling theorem, 154 
Shelve, 246 
SIL, 317 
Siemens S5, 34 
Siemens S7, 101, 110 
Siemens Simatic, 33 
Signal to noise ratio, 197 
Simultaneous convergence, 94 

divergence, 94 
Sinec, 218 
Six pack, the, 314 
SMA connector, 229 
SNR, 197 
Soft PLC’s, 292 
Softkeys, 270 
Software engineering, 115 
Software tools, 109 
Source/destination model, 222 
SP, 4, 164 
Space, 186 
Spaghetti programming, 92 
Specular reflection, 176 
Speed measurement, 146 
Spike suppression, 27 
SQI, 95 
SQO, 95 
SQRT, 163 
Square root, need for, 144 
SR flip-flop, 60 
ST, 101 

STI, 137 
STP, 144 
Stability, 167 
Stack, 289 
Stacked codes, 175 
Stages, of a project, 31, 116 
Standards for signals, 149, 185 
Star network, 201 
Starnet, 217 
State transition diagram, 86 
Statement list, 55 
Statistical TDM, 209 
STE bus, 282 
Step index fibre, 228 
Stepladder, 95 
STL, 95 
Storage: 

circuits, 58 
flip-flop, 60 
latch/unlatch, 62 
stop bit, 186 

Store, computer, 8 
STP, 144 
Strain gauge, 146 
Strain weigher, 146 
Structured text, 101, 105 
Structure of programs, 119 
Subroutine blocks, 122 
Subroutines, 10, 123 
Suicide mode, 170 
Sum of products, 85 
Supervisory control and data 

acquisition, 271 
Supply layout, 322 
Surge tank, 377 
Synchronization, 185 
Synchronous transmission, 185 
Systematic failure, 303 

Tachometer, 146 
Tags, 256, 271 
Talker, 279 
TDM, 209 
Temperature, measurement of, 140 
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Terminal strips, 328 
Terminating resistors, 207 
Testing, 117 
Thermistor, 142 
Thermocouple, 141 
Three term control, 166 
Time base, 65 
Time constant, 160 
Time division multiplexing, 

209 
Timers, 16, 63 
Token passing, 210 
TOF, 65 
Toggle action, 365 
TON, 65 
TOP, 219 
Top down design, 118 
Topologies, (network), 207 
Total internal reflection, 227 
Touchscreen, 270 
Trackerball, 270 
Training, 344 
Transducer, 149 
Transitions, 87, 89, 91, 101 
Transmission: 

lines, 205 
rates, 106 

Transmitter, 149 
Transport layer, 212 
Trapezoid integration, 389 
Trending, 112, 273 
Truth table, 83 
Tuning a control loop, 167 
Turbine meter, 144 

Turndown, 144 
TW 4–20 mA transmitter, 151 
Two dimensional bar-code, 175 
Two’s complement, 72, 421 
Two wire transducer, 151 

UART, 183 
Ultrasonic flow measurement, 145 
Unit distance codes, 394 
Universal product code, 175 
Unreliability, 332 
UPC, 175 

V24, 191 
Vampire technology, 219 
Venturi, 144 
Vericode, 175 
Version control, 361 
Vertical parity check, 199 
VME bus, 281 
Volumetric flow, 144 
Vortex shedding, 145 

WAN, 205 
Watchdog, 307 
Watertight enclosures, 326 
Weatherproof enclosures, 326 
Weighing systems, 146 
Wide area networks, 205 
Wiring regulations, 325 

XT, IBM, PC, 283

Ziegler-Nichols, 168 

075065757X-index.fm  Page 429  Saturday, June 28, 2003  5:09 PM



075065757X-index.fm  Page 430  Saturday, June 28, 2003  5:09 PM


	Contents
	Preface
	1 Computers and industrial control
	1.1 Introduction
	1.2 Types of control strategies
	1.2.1 Monitoring subsystems
	1.2.2 Sequencing subsystems
	1.2.3 Closed loop control subsystems
	1.2.4 Control devices

	1.3 Enter the computer
	1.3.1 Computer architectures
	1.3.2 Machine code and assembly language programming
	1.3.3 High level languages
	1.3.4 Application programs
	1.3.5 Requirements for industrial control
	1.3.6 The programmable controller

	1.4 Input/output connections
	1.4.1 Input cards
	1.4.2 Output connections
	1.4.3 Input/output identification

	1.5 Remote I/O
	1.6 The advantages of PLC control

	2 Programming techniques
	2.1 Introduction
	2.2 The program scan
	2.3 Identification of input/output and bit addresses
	2.3.1 Racks, cards and signals
	2.3.2 Allen Bradley PLC-5
	2.3.3 Siemens SIMATIC S5
	2.3.4 CEGELEC GEM-80
	2.3.5 ABB Master
	2.3.6 Mitsubishi F2
	2.3.7 Internal bit storage

	2.4 Programming methods
	2.4.1 Introduction
	2.4.2 Ladder diagrams
	2.4.3 Logic symbols
	2.4.4 Statement list

	2.5 Bit storage
	2.6 Timers
	2.7 Counters
	2.8 Numerical applications
	2.8.1 Numeric representations
	2.8.2 Data movement
	2.8.3 Data comparison
	2.8.4 Arithmetical operations

	2.9 Combinational and event-driven logic
	2.9.1 Combinational logic
	2.9.2 Event-driven logic

	2.10 Micro PLCs
	2.11 IEC 1131-3, towards a common standard
	2.12 Programming software
	2.13 Programming software tools

	3 Programming style
	3.1 Introduction
	3.2 Software engineering
	3.3 Top-down design
	3.4 Program structure in various PLCs
	3.5 Housekeeping and good software practice
	3.6 Speeding up the PLC scan time

	4 Analog signals, closed loop control and intelligent modules
	4.1 Introduction
	4.2 Common analog signals
	4.2.1 Temperature
	4.2.2 Pressure
	4.2.3 Flow
	4.2.4 Speed
	4.2.5 Weighing systems
	4.2.6 Level
	4.2.7 Position
	4.2.8 Output signals

	4.3 Signals and standards
	4.4 Analog interfacing
	4.4.1 Resolution
	4.4.2 Multiplexed inputs
	4.4.3 Conversion times
	4.4.4 Channel selection and conversion to engineering units
	4.4.5 Analog input cards
	4.4.6 Filtering

	4.5 Analog output signals
	4.6 Analog-related program functions
	4.7 Closed loop control
	4.7.1 Introduction to control theory
	4.7.2 Stability and loop tuning
	4.7.3 Closed loop control and PLCs

	4.8 Specialist control processors
	4.9 Bar codes
	4.10 High-speed counters
	4.11 Intelligent modules
	4.12 Installation notes

	5 Distributed systems
	5.1 Parallel and serial communications
	5.2 Serial standards
	5.2.1 Introduction
	5.2.2 Synchronization
	5.2.3 Character codes
	5.2.4 Transmission rates
	5.2.5 Modulation of digital signals
	5.2.6 Standards and protocols
	5.2.7 Error control
	5.2.8 Point to point communication

	5.3 Area networks
	5.3.1 Introduction
	5.3.2 Transmission lines
	5.3.3 Network topologies
	5.3.4 Network sharing
	5.3.5 A communication hierarchy

	5.4 The ISO/OSI model
	5.5 Proprietary systems
	5.5.1 Introduction
	5.5.2 Allen Bradley Data Highway
	5.5.3 Gem-80 Starnet, ESP and CORONET
	5.5.4 Siemens SINEC
	5.5.5 Ethernet
	5.5.6 Towards standardization
	5.5.7 Profibus

	5.6 Safety and practical considerations
	5.7 Fibre optics

	6 The man–machine interface
	6.1 Introduction
	6.2 Simple digital control and indicators
	6.3 Numerical outputs and inputs
	6.3.1 Numerical outputs
	6.3.2 Multiplexed outputs
	6.3.3 Leading zero suppression
	6.3.4 Numerical inputs

	6.4 Alarm annunciation
	6.5 Analog indication
	6.6 Computer graphics
	6.6.1 Introduction
	6.6.2 The Allen Bradley Panelview
	6.6.3 Pixel graphics; the CEGELEC Imagem
	6.6.4 The Siemens Simatic HMI family
	6.6.5 Practical considerations
	6.6.6 Data entry

	6.7 Message displays
	6.8 SCADA packages

	7 Industrial control with conventional computers
	7.1 Introduction
	7.2 Bus-based machines
	7.2.1 Introduction
	7.2.2 IEEE-488 parallel interface bus
	7.2.3 Backplane bus systems
	7.2.4 IBM PC clones

	7.3 Programming for real time control
	7.4 Soft PLCs

	8 Practical aspects
	8.1 Introduction
	8.2 Safety
	8.2.1 Introduction
	8.2.2 Risk assessment
	8.2.3 PLCs, computers and safety
	8.2.4 Emergency stops
	8.2.5 Guarding
	8.2.6 Safety legislation
	8.2.7 IEC 61508

	8.3 Design criteria
	8.4 Constructional notes
	8.4.1 Power supplies
	8.4.2 Equipment protection

	8.5 Maintenance and fault finding
	8.5.1 Introduction
	8.5.2 Statistical representation of reliability
	8.5.3 Maintenance philosophies
	8.5.4 Designing for faults
	8.5.5 Documentation
	8.5.6 Training
	8.5.7 Fault-finding aids, EDDI and FlMs

	8.6 Electromagnetic compatibility (EMC) and CE marking
	Table 8.7

	8.7 Other programmable devices

	9 Sample ladder logic
	9.1 Introduction
	9.2 One Shot
	9.3 Toggle action
	9.4 Alarm annunciator
	9.5 First order filter
	9.6 Level control
	9.7 Linearization
	9.8 Flow totalization
	9.9 Scaling
	9.10 Gray code conversion
	9.11 BCD to Binary conversion
	9.12 Binary to BCD conversion
	9.13 A hydraulic system

	Appendix Number systems
	Index

